Skip to main content
Log in

Toward optimized temperature sum parameterizations for forecasting the start of the pollen season

  • Original Paper
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

The start date of flowering of allergenic species is of great interest in the context of allergy. Such forecasts can help to plan the therapy and design the medical treatment. For this purpose, temperature sum models are usually employed. Designing temperature sum models requires the selection of different parameters such as the base temperature and the start date for the temperature sum. However, the optimal parameterization is often unknown and varies depending on location and species. The purpose of this study was to systematically test parameterizations of temperature sum models based on 12 Swiss pollen stations. The examined taxa include Corylus, Alnus, Fraxinus, Betula, and Poaceae. We tested the simple thermal model type (forcing-only model hereafter) which relies solely on forcing temperatures and the sequential model type that includes also chilling temperatures. The mean absolute error was used to assess the performance of the models. Our study shows that the sequential model could not achieve a discernible reduction of the (statistical) error compared to the forcing-only model for all taxa. The mean absolute error lies roughly between 2 and 4 days with the lowest values for Betula. The optimized parameterizations in combination with temperature forecast and the climatological mean were used during the 2012 pollen season to provide daily updated forecasts of the start of flowering for all five taxa. Improvements of the models could possibly be achieved by testing additional temperature parameters as well as other meteorological factors such as precipitation or irradiation. Identification of a process-oriented model with high statistical performance for all stations would facilitate the implementation in numerical pollen dispersion models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andersen, T. B. (1991). A model to predict the beginning of the pollen season. Grana, 30, 269–275.

    Article  Google Scholar 

  • Cannell, M. G. R., & Smith, R. I. (1983). Thermal time, chill days and prediction of budburst in Picea sitchensis. The Journal of Applied Ecology, 20, 951–963.

    Article  Google Scholar 

  • Cesaraccio, C., Spano, D., Snyder, R., & Ducea, P. (2004). Chilling and forcing model to predict bud-burst of crop and forest species. Agricultural and Forest Meteorology, 126, 1–13.

    Article  Google Scholar 

  • Chuine, I. (2000). A unified model for budburst of trees. Journal of Theoretical Biology, 207, 337–347.

    Article  CAS  Google Scholar 

  • Chuine, I., Cour, P., & Rousseau, D. D. (1998). Fitting models prediction dates of flowering of temperate-zone trees using simulated annealing. Plant Cell and Environment, 21, 445–466.

    Article  Google Scholar 

  • Chuine, I., Cour, P., & Rousseau, D. D. (1999). Selecting models to predict the timing of flowering of temperate trees: implications for tree phenology modelling. Plant Cell and Environment, 22, 1–13.

    Article  Google Scholar 

  • Clot, B. (1998). Forecast of the Poaceae pollination in Zurich and Basle (Switzerland). Aerobiologia, 14, 267–268.

    Article  Google Scholar 

  • Clot, B. (2001). Airborne birch pollen in Neuchâtel (Switzerland): onset, peak and daily patterns. Aerobiologia, 17, 25–29.

    Article  Google Scholar 

  • Comtois, P., Alcazar, P., & Néron, D. (1999). Pollen counts statistics and its relevance to precision. Aerobiologia, 15, 19–28.

    Article  Google Scholar 

  • Cotos-Yáñez, T. R., Rodríguez-Rajo, F. J., Pérez-González, A., Aira, M. J., & Jato, V. (2012). Quality control in aerobiology: comparison different slide reading methods. Aerobiologia, 29, 1–11.

    Article  Google Scholar 

  • Cross, H. Z., & Zuber, S. M. (1972). Prediction of flowering dates in Maize based on different methods of estimating thermal unit. Agronomy Journal, 64, 351–355.

    Article  Google Scholar 

  • Efron, B., & Tibshirani, R. J. (1994). An introduction to the bootstrap. UK: Taylor & Francis.

    Google Scholar 

  • Galán, C., Fuillerat, M. J., Comtois, P., & Domínguez, E. (1998). A predictive study of Cupressaceae pollen season onset, severity, maximum value and maximum value date. Aerobiologia, 14, 195–199.

    Article  Google Scholar 

  • García-Mozo, H., Galán, C., Aira, M. J., Belmonte, J., Díaz de la Guardia, C., Fernández, D., et al. (2002). Modelling start of oak pollen season in different climatic zones in Spain. Agricultural and Forest Meteorology, 110, 247–257.

    Article  Google Scholar 

  • García-Mozo, H., Galán, C., Belmonte, J., Bermejo, D., Candau, P., Díaz de la Guardia, C., et al. (2009). Predicting the start and peak dates of the Poaceae pollen season in Spain using process-based models. Agricultural and Forest Meteorology, 149, 256–262.

    Article  Google Scholar 

  • Gassner, M. D., Gehrig, R., & Schmid-Grendelmeier, M. D. (2012). Hay fever as a christmas gift. The New England Journal of Medicine, 368, 393–394.

    Article  Google Scholar 

  • Häkkinen, R. (1999). Statistical evaluation of bud development theories: application to bud burst of Betula pendula leaves. Tree Physiology, 19, 613–618.

    Article  Google Scholar 

  • Häkkinen, R., Linkosalo, T., & Hari, P. (1998). Effects of dormancy and environmental factors on timing of bud burst in Betula pendula. Tree Physiology, 18, 707–712.

    Article  Google Scholar 

  • Kramer, K. (1994). Selecting a model to predict the onset of growth of Fagus sylvatica. The Journal of Applied Ecology, 31, 172–181.

    Article  Google Scholar 

  • Laaidi, M. (2001). Forecasting the start of the pollen season of Poaceae: evaluation of some methods based on meteorological factors. International Journal of Biometeorology, 45(1), 1–7.

    Article  CAS  Google Scholar 

  • Landsberg, J. J. (1974). Apple fruit bud development and growth; analysis and an empirical model. Annals of Botany, 38, 1013–1023.

    Google Scholar 

  • Linkosalo, T., Häkkinen, R., & Hänninen, H. (2006). Models of the spring phenology of boreal and temperate trees: is there something missing? Tree Physiology, 26, 1165–1172.

    Article  Google Scholar 

  • Niqueux, M., & Arnaud, R. (1967). Recherches d’une relation entre précocité d’épiaison et températures pour quelques variétés de graminées fourragères observées en France. Ann Physiol Vég, 9, 29–64.

    Google Scholar 

  • Pauling, A., Rotach, M. W., Gehrig, R., Clot, B., & Contributors to the European Aeroallergen Network (EAN). (2012). A method to derive vegetation distribution maps for pollen dispersion models using birch as an example. International Journal of Biometeorology, 56, 949–958.

    Article  CAS  Google Scholar 

  • R Development Core Team. (2010). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

    Google Scholar 

  • Réaumur, R. A. (1735). Observations du thermomètres, faites à Paris pendant l’ année 1735, comparées avec celles qui ont été faites sous la ligne, à l’ isle de France, à Alger et quelques unes de nos isles de l’ Amérique. Académie des Sciences de Paris 545.

  • Rodriguez-Rajo, F. J., Frenguelli, G., & Jato, M. V. (2003). Effect of air temperature on forecasting the start of the Betula pollen season at two contrasting sites in the south of Europe (1995–2001). International Journal of Biometeorology, 47, 117–125.

    CAS  Google Scholar 

  • Sarvas, R. (1974). Investigations on the annual cycle of development of forest trees. Autumn dormancy and winter dormancy. Commun Inst For Fenn, 84, 1–101.

    Google Scholar 

  • Scadding, G. K., Durham, S. R., Mirakian, R., Jones, N. S., Leech, S. C., Farooque, S., et al. (2008). BSACI guidelines for the management of allergic and non-allergic rhinitis. Clinical and Experimental Allergy, 38, 19–42.

    Article  CAS  Google Scholar 

  • Sofiev, M., Siljamo, P., Ranta, H., & Rantio-Lehtimäki, A. (2006). Towards numerical forecasting of long-range air transport of birch pollen: theoretical considerations and a feasibility study. International Journal of Biometeorology, 50, 392–402.

    Article  CAS  Google Scholar 

  • Vogel, H., Pauling, A., & Vogel, B. (2008). Numerical simulation of birch pollen dispersion with an operational weather forecast system. International Journal of Biometeorology, 52, 805–814.

    Article  Google Scholar 

  • Vogel, B., Vogel, H., Bäumer, D., Bangert, M., Lundgren, K., Rinke, R., et al. (2009). The comprehensive model system COSMO-ART—Radiative impact of aerosol on the state of the atmosphere on the regional scale. Atmospheric Chemistry and Physics, 9, 8661–8680.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Pauling.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 104 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pauling, A., Gehrig, R. & Clot, B. Toward optimized temperature sum parameterizations for forecasting the start of the pollen season. Aerobiologia 30, 45–57 (2014). https://doi.org/10.1007/s10453-013-9308-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-013-9308-0

Keywords

Navigation