Skip to main content
Log in

Modelling analysis of source regions of long-range transported birch pollen that influences allergenic seasons in Lithuania

  • Original Paper
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

This study analyses the spatial and temporal distribution of regional and long-range transported birch (Betula L.) pollen in Lithuania and the neighbouring countries. The potential long-range transport cases of birch pollen in Lithuania were analysed for the whole period of available observations, 2004–2007. The birch pollen was recorded at three measurement stations in Lithuania by using Hirst-type volumetric spore traps. The phenological observations in Lithuania were also used for the detection of potential long-range transport-induced episodes. Two variants of the regional and continental scale atmospheric dispersion model SILAM (Lagrangian and Eulerian) in an adjoint mode (used for inverse dispersion modelling and data assimilation), and the trajectory model HYSPLIT were employed to evaluate the source origins of the observed pollen. During four seasons in 2004–2007, we found in total 24 cases, during which remarkable pollen concentrations were recorded before the local flowering season. According to modelling, most of these were originated from the sources outside Lithuania: Latvia, southern Sweden, Denmark, Belarus, Ukraine and Moldova, possibly, also coastal regions of Germany and Poland. Two episodes were attributed to local early-flowering birch trees. The spatial and temporal patterns of the long-range transport of early pollen to Lithuania were found out to be highly variable; the predicted source regions for the cases considered were similar only for some dates in 2004 and 2006. During the analysed period, we found both cases, in which the predictions of the SILAM model variants and those of the HYSPLIT model were similar, and cases, in which there were substantial differences. In general, for complicated atmospheric circulation patterns the model predictions can be drastically different, with a tendency of trajectory model to fail reproducing the key episode features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bergamaschi, P., Krol, M., Dentener, F., Vermeulen, A., Meinhardt, F., Graul, R., et al. (2005). Inverse modelling of national and European CH4 emissions using the atmospheric zoom model TM5. Atmospheric Chemistry and Physics, 5, 2431–2460.

    Article  CAS  Google Scholar 

  • Cecchi, L., Torrigiani Malaspina, T., Albertini, R., Zanca, M., Ridolo, E., Usberti, I., et al. (2007). The contribution of long-distance transport to the presence of Ambrosia pollen in central northern Italy. Aerobiologia, 23, 145–151.

    Article  Google Scholar 

  • Clot, B. (2001). Airborne birch pollen in Neuchâtel (Switzerland): Onset, peak and daily patterns. Aerobiologia, 17, 25–29.

    Article  Google Scholar 

  • D’Amato, G., Cecchi, L., Bonini, S., Nunes, C., Annesi-Maesano, I., Behrendt, H., et al. (2007). Allergenic pollen and pollen allergy in Europe. Allergy, 62, 976–990.

    Article  CAS  Google Scholar 

  • Draxler, R. R., Rolph, G. D. (2003). HYSPLIT (hybrid single-particle lagrangian integrated trajectory) Model access via NOAA ARL READY Website (http://www.arl.noaa.gov/ready/hysplit4.html). NOAA Air Resources Laboratory, Silver Spring, MD. Accessed September 23, 2008.

  • Estrella, N., Menzel, A., Krämer, U., & Behrendt, H. (2006). Integration of flowering dates in phenology and pollen counts in aerobiology: Analysis of their spatial and temporal coherence in Germany (1992–1999). International Journal of Biometeorology, 51, 49–59.

    Article  Google Scholar 

  • Galperin, M. (1999). Approaches for improving the numerical solution of the advection equation. In Z. Zlatev, J. Dongarra, I. Dimov, J. Brandt, & P. J. Builtjes (Eds.), Large scale computations in air pollution modelling (pp. 161–172). The Netherlands: Kluwer Academic Publishers.

  • Galperin, M. V. (2000). The approaches to correct computation of airborne pollution advection. In: Problems of ecological monitoring and ecosystem modelling (Vol. XVII, pp. 54–68). St. Petersburg: Gidrometeoizdat (in Russian).

  • Galperin, M., Maslyaev, A., Pekar, M. & Sofiev, M. (1996). The development of HM model in 1996. MSC-E Report 5/96, Moscow, July 1996, 62.

  • Galperin, M., & Sofiev, M. (1998). The long-range transport of ammonia and ammonium in the Northern Hemisphere. Atmospheric Environment, 32(3), 373–380.

    Article  CAS  Google Scholar 

  • Gassmann, I. M., & Pérez, F. C. (2006). Trajectories associated to regional and extra-regional pollen transport in the southeast of Buenos Aires province, Mar del Plata (Argentina). International Journal of Biometeorology, 50, 280–291.

    Article  Google Scholar 

  • Goldberg, C., Buch, H., Moseholm, L., & Weeke, E. V. (1988). Airborne pollen records in Denmark, 1977–1986. Grana, 27, 209–217.

    Article  Google Scholar 

  • Hidalgo, J. P., Mangin, A., Galán, C., Hembise, O., Vázquez, M. L., & Sanchez, O. (2002). An automated system for surveying and forecasting Olea pollen dispersion. Aerobiologia, 18, 23–31.

    Article  Google Scholar 

  • Hirst, J. M. (1952). An automatic volumetric spore trap. Annals of Applied Biology, 39(2), 257–265.

    Article  Google Scholar 

  • Jato, V., Méndez, J., Rodríguez-Rajo, J., & Seijo, C. (2002). The relationship between the flowering phenophase and airborne pollen of Betula in Galicia (N.W. Spain). Aerobiologia, 18, 55–64.

    Article  Google Scholar 

  • Karppinen, A., Sofiev, M., Siljamo, P., Kukkonen, J., Ranta, H., Linkosalo, T., Jäger, S., Rasmunssen, A., Nicklaß, D. & Wanner, L. (2007). Pollen: A challenge for environmental information services In O. Hryniewicz, J. Studziński & A. Szediw (Eds.), EnviroInfo Warsaw 2007, environmental informatics and systems research (Vol. 2, pp. 75–79): Workshop and application papers, The 21st international conference on “informatics for environmental protection” Warsaw, Poland. Shaker Verlag: Aachen 2007, ISBN 978-3-8322-6397-3, ISSN 1616-0886.

  • Kasprzyk, I. (2003). Flowering phenology and airborne pollen grains of chosen tree taxa in Rzeszów (SE Poland). Aerobiologia, 19, 113–120.

    Article  Google Scholar 

  • Kuparinen, A. (2006). Mechanistic models for wind dispersal. Trends in Plant Science, 11, 296–301.

    Article  CAS  Google Scholar 

  • Kuparinen, A., Markkanen, T., Riikonen, H., & Vesala, T. (2007a). Modeling air-mediated dispersal of spores, pollen and seeds in forested areas. Ecological modelling, 208, 177–188.

    Article  Google Scholar 

  • Kuparinen, A., Snäll, T., Vänskä, S., & O’Hara, B. R. (2007b). The role of model selection in describing stochastic ecological processes. Oikos, 116, 966–974.

    Article  Google Scholar 

  • Laaidi, M. (2001). Regional variations in the pollen season of Betula in Burgundy: two models for predicting the start of the pollination. Aerobiologia, 17, 247–254.

    Article  Google Scholar 

  • Latałowa, M., Miętus, M., & Uruska, A. (2002). Seasonal variations in the atmospheric Betula pollen count in Gdańsk (southern Baltic coast) in relation to meteorological parameters. Aerobiologia, 18, 33–43.

    Article  Google Scholar 

  • Mahura, G. A., Korsholm, S. U., Baklanov, A. A., & Rasmussen, A. (2007). Elevated birch pollen episodes in Denmark: Contributions from remote sources. Aerobiologia, 23, 171–179.

    Article  Google Scholar 

  • Mandrioli, P., Comtois, P., Dominguez Vilches, E., Galan Soldevilla, C., Isard, S., & Syzdek, L. (1998). Sampling: Principles and techniques. In P. Mandrioli, P. Comtois, & V. Levizzani (Eds.), Methods in aerobiology (pp. 49–101). Bologna: Pitagora Editrice.

    Google Scholar 

  • Marchuk, G. I. (1982). Mathematical modeling in the environmental problems. Moscow: “Nauka” publisher. (320 pp, in Russian).

    Google Scholar 

  • Navasaitis, M., Ozolinčius, R., Smaliukas, D., & Balevičienė, J. (2003). Lietuvos dendroflora. Kaunas: Lututė. (575 pp, in Lithuanian).

    Google Scholar 

  • Porsbjerg, C., Rasmussen, A., & Backer, V. (2003). Airborne pollen in Nuuk, Greenland, and the importance of meteorological parameters. Aerobiologia, 19, 29–37.

    Article  Google Scholar 

  • Prank, P., Sofiev, M., Kaasik, M., Ruuskanen, T., Kukkonen, J., & Kulmala, M. (2008). The origin and formation mechanics of aerosol during a measurement campaign in Finnish Lapland, evaluated using the regional dispersion model SILAM. In C. Borrego & A. I. Miranda (Eds.), Air pollution modeling and its application XIX, NATO science for peace and security series-C: Environmental security (pp. 530–538). Berlin: Springer.

    Google Scholar 

  • Rannik, Ü., Markkanen, T., Raittila, J., Hari, P., & Vesala, T. (2003). Turbulence statistics inside and over forest: Influence on footprint prediction. Boundary-Layer Meteorology, 109, 163–189.

    Article  Google Scholar 

  • Ranta, H., Kubin, E., Siljamo, P., Sofiev, M., Linkosalo, T., Oksanen, A., et al. (2006). Long distance pollen transport cause problems for determining the timing of birch pollen season in Fennoscandia by using phenological observations. Grana, 45, 297–304.

    Article  Google Scholar 

  • Saarikoski, S., Sillanpää, M., Sofiev, M., Timonen, H., Saarnio, K., Teinilä, K., et al. (2007). Chemical composition of aerosols during a major biomass burning episode over northern Europe in spring 2006: Experimental and modelling assessments. Atmospheric Environment, 41, 3577–3589.

    Article  CAS  Google Scholar 

  • Sauliene, I., & Motiekaityte, V. (2005). Pecularities of aeropalinological monitoring in Northern Lithuania. The 6th international conference “environmental engineering” selected papers, I, 252–256.

    Google Scholar 

  • Šaulienė, I., & Veriankaitė, L. (2006). Application of backward air mass trajectory analysis in evaluating airborne pollen dispersion. Journal of Environmental Engineering and Landscape Management, XIV(3), 113–120.

    Google Scholar 

  • Šaulienė, I., Veriankaitė, L., & Lankauskas, A. (2007). The analysis of the impact of long distance air mass to airborne pollen concentration. Acta Biologica Universitatis Daugavpilensis, Suppl 1, 61–74.

    Google Scholar 

  • Siljamo, P., Sofiev, M., Ranta, H., Linkosalo, T., Kubin, E., Ahas, R., et al. (2008a). Representativeness of point-wise phenological Betula data collected in different parts of Europe. Global Ecology and Biogeography, 17, 489–502.

    Article  Google Scholar 

  • Siljamo, P., Sofiev, M., Severova, E., Ranta, H., Kukkonen, J. & Polevova, S. (2008b). Sources, impact and exchange of early-spring birch pollen in the Moscow region and Finland. Aerobiologia doi:10.1007/s10453-008-9100-8.

  • Siljamo, P., Sofiev, M., Severova, E., Ranta, H. & Polevova, S. (2007). On influence of long-range transport of pollen grains onto pollinating seasons. In C.Borrego & E.Renner (Eds.), Developments in Environmental Science, 6. doi:10.1016/S1474-8177(70)06074-3. Air Polution Modelling and its Applications XVIII, 708–716.

  • Skjøth, C. A., Smith, M., Brandt, J., & Emberlin, J. (2009). Are the birch trees in Southern England a source of Betula pollen for North London? International Journal of Biometeorology, 53, 75–86.

    Article  Google Scholar 

  • Skjøth, A. C., Sommerw, J., Stachz, A., Smithz, M., & Brandt, J. (2007). The long-range transport of birch (Betula) pollen from Poland and Germany causes significant pre-season concentrations in Denmark. Clinical and Experimental Allergy, 37, 1204–1212.

    Article  Google Scholar 

  • Smith, M., & Emberlin, J. (2006). A 30-day-ahead forecast model for grass pollen in north London, United Kingdom. International Journal of Biometeorology, 50, 233–242.

    Article  Google Scholar 

  • Sofiev, M. (2000). A model for the evaluation of long-term airborne pollution transport at regional and continental scales. Atmospheric Environment, 34(15), 2481–2493.

    Article  CAS  Google Scholar 

  • Sofiev, M. (2002). Extended resistance analogy for construction of the vertical diffusion scheme for dispersion models. Journal of Geophysical Research—Atmosphere, 107, D12. doi:10.1029/2001JD001233.

    Google Scholar 

  • Sofiev, M., Galperin, M., & Genikhovich, E. (2008a). A construction and evaluation of Eulerian dynamic core for the air quality and emergency modelling system SILAM. In C. Borrego & A. I. Miranda (Eds.), Air pollution modelling and its application XIX. NATO science for peace and security series—C: Environmental security (pp. 699–701). Berlin: Springer.

    Chapter  Google Scholar 

  • Sofiev, M., Siljamo, P., Ranta, H., Linkosalo, T., Jaeger, S. & Jaeger, C. (2008b). From Russia to Iceland: An evaluation of a large-scale pollen and chemical air pollution episode during April and May, 2006. Aerobiological Monographs, 1 (in press).

  • Sofiev, M., Siljamo, P., Ranta, H., & Rantio-Lehtimäki, A. (2006a). Towards numerical forecasting of long-range air transport of birch pollen: Theoretical considerations and a feasibility study. International Journal of Biometeorology, 50, 392–402.

    Article  CAS  Google Scholar 

  • Sofiev, M., Siljamo, P., Valkama, I., Ilvonen, M., & Kukkonen, J. (2006b). A dispersion modelling system SILAM and its evaluation against ETEX data. Atmospheric Environment, 40, 674–685.

    Article  CAS  Google Scholar 

  • Undén, P., Rontu, L., Järvinen, H., Lynch, P., Calvo, J. & Cats, G. et al. (2002). HIRLAM-5 scientific documentation. December 2002. SMHI: Norköping, Sweden.

  • Van de Water, K. P., & Levetin, E. (2001). Contribution of upwind pollen sources to the characterization of Juniperus ashei phenology. Grana, 40, 133–141.

    Article  Google Scholar 

  • Vogel, H., Pauling, A., & Vogel, B. (2008). Numerical simulation of birch pollen dispersion with an operational weather forecast system. International Journal of Biometeorology, 52, 805–814. doi:10.1007/s00484-008-0174-3.

    Article  Google Scholar 

  • WHO. (2003). Phenology and human health: Allergic disorders. WHO Regional Office for Europe: Copenhagen. 55 pp.

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the assistance of NOAA Air Resources Laboratory for the HYSPLIT model help, the Lithuanian Hydrometeorological Service for the phenological data and the aerobiological networks of Finland, Denmark, Sweden and Latvia for the pollen information. The co-operation with the European Aeroallergen Network is also greatly appreciated. This study was supported by the ESA-PROMOTE, EU-HIALINE, EU-MACC and EU-MEGAPOLI projects, as well as by the COST Actions ES0603 and ES0602.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Veriankaitė.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veriankaitė, L., Siljamo, P., Sofiev, M. et al. Modelling analysis of source regions of long-range transported birch pollen that influences allergenic seasons in Lithuania. Aerobiologia 26, 47–62 (2010). https://doi.org/10.1007/s10453-009-9142-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-009-9142-6

Keywords

Navigation