Skip to main content

Advertisement

Log in

Assessment between pollen seasons in areas with different urbanization level related to local vegetation sources and differences in allergen exposure

  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

Pollen data recorded by a single sampler in any given city often fail to reflect particular events occurring in surrounding areas. This is frequently overlooked when interpreting aerobiological results, and therefore pollen data obtained in urban areas may not necessarily be representative of the situation in more rural areas of the same city. Our purpose is to assess differences between allergenic pollen concentrations recorded in an urban area (Eskulap) and a rural/suburban (Morasko) of the same city from 2005 to 2007. Anova-Manova Scheffe, Spearman correlation and Mixed-design ANOVA whitin-subjects effects tests were applied. The results obtained have showed longer pollen seasons, earlier starts of flowering and later conclusion in the urban area. The participation of arboreal pollen in the pollen fall of both sites had enough significative similarities to determine that is linked to regional conditions, while differences in the atmospheric pollen content of herbaceous plants between sites should be due to local conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams-Groom, B., Emberlin, J., Corden, J. M., Millington, W., & Mullins, J. (2002). Predicting the start of the Betula pollen season at London, Derby and Cardiff, United Kingdom, using a multiple regression model, based on data from 1987 to 1997. Aerobiologia, 18, 117–123.

    Article  Google Scholar 

  • Andersen, T. B. (1991). A model to predict the beginning of the pollen season. Grana, 30, 269–275.

    Article  Google Scholar 

  • Beggs, P. J. (2004). Impacts of climate change on aeroallergens: past and future. Clinical Expeimental Allergy, 34, 1507–1513.

    Article  CAS  Google Scholar 

  • Cariñanos, P., Sánchez-Mesa, J. A., Prieto-Baena, J. C., López, A., Guerra, F., et al. (2002). Pollen allergy related to the area of residence in the city of Córdoba, south-west Spain. Journal of Environmental Monitoring, 4, 734–738.

    Article  CAS  Google Scholar 

  • Connell, J. T. (1969). Quantitative intranasal pollen challenges. 3. The priming effect in allergic rhinitis. Journal of Allergy, 43, 33–44.

    Article  CAS  Google Scholar 

  • Corden, J., Stach, A., & Millington, W. (2002). A comparison of Betula pollen seasons at two European sites; Derby, United Kingdom and Poznan, Poland (1995–1999). Aerobiologia, 18, 45–53.

    Article  Google Scholar 

  • D’Amato, G., Cecchi, L., Bonini, S., Nunes, C., Annesi-Maesano, I., Behrendt, H., et al. (2007). Allergenic pollen and pollen allergy in Europe. Allergy, 62, 976–990.

    Article  CAS  Google Scholar 

  • D’Amato, G., & Spieksma, F. T. M. (1992). European allergenic pollen types. Aerobiologia, 8, 447–450.

    Article  Google Scholar 

  • Davies, R. R., & Smith, L. P. (1973). Forecasting the start and severity of the hay fever season. Clinical Allergy, 3, 263–267.

    Article  CAS  Google Scholar 

  • Domínguez, E., Galán, C., Villamandos, F. E., & Infante, F. (1991). Handling and evaluation of the data from the aerobiological sampling. Monografías Rea/Ean, 1, 1–13.

    Google Scholar 

  • Eder, W., Ege, M. J., & von Mutius, E. (2006). The asthma epidemic. New England Journal of Medicine, 355, 2226–2235.

    Article  CAS  Google Scholar 

  • Emberlin, J., Mullins, J., Cordon, J., Millington, W., Brooke, M., Savage, M., et al. (1997). The trend to earlier birch pollen seasons in the UK: A biotic response to changes in weather conditions? Grana, 36, 29–33.

    Article  Google Scholar 

  • Emberlin, J., & Norris-Hill, J. (1991). Spatial variation in airborne pollen deposition. Grana, 30, 190–195.

    Article  Google Scholar 

  • Frenz, D. A. (2000). Interpreting atmospheric pollen counts for use in clinical allergy: allergic symptomology. Annals of Allergy, Asthma & Immunology, 84, 481–491.

    Article  CAS  Google Scholar 

  • Galán, C., Tormo, R., Cuevas, J., Infante, F., & Domínguez, E. (1991). Theoretical daily variation patterns of airborne pollen in the South-west of Spain. Grana, 30, 201–209.

    Article  Google Scholar 

  • Glassheim, J. W., Ledoux, R. A., Goodman, D. L., Nelson, H. S., Vaughan, T. R., & Weber, R. W. (1995). Analysis of meterological variables and seasonal pollen counts in Denver, Colorado. Annals of Allergy, Asthma & Immunology, 75, 149–156.

    CAS  Google Scholar 

  • Hart, M. L., Wentworth, J. E., & Bailey, J. P. (1994). The effects of trap height and weather variables on reordered pollen concentration at Leicester. Grana, 33, 100–103.

    Article  Google Scholar 

  • Hicks, S. (1991). Aerobiology and paleoecology. Aerobiologia, 8, 220–230.

    Article  Google Scholar 

  • Hirst, J. M. (1952). An automatic volumetric spore trap. Annals of Applied Biology, 39, 257–265.

    Article  Google Scholar 

  • Hyde, H. A. (1959). Atmospheric pollen in relation to land use. Nature, 183, 1694–1695.

    Article  Google Scholar 

  • Kasprzyk, I. (1999). Comparative analysis of pollen fall at three sites in south-eastern Poland. Annals of Agricultural Environmental Medicine, 6, 73–79.

    CAS  Google Scholar 

  • Kasprzyk, I. (2006). Comparative study of seasonal and intradiurnal variation of airborne herbaceous pollen in urban and rural areas. Aerobiologia, 22, 185–195.

    Article  Google Scholar 

  • Lewis, W. H., Vinay, P., & Zenger, V. E. (1983). Airborne and allergenic pollen of North America. Baltimore: The Johns Hopkins University Press.

    Google Scholar 

  • Matthiesen, F., Ipsen, H., & Løwenstein, H. (1991). Pollen allergies. In G. D’Amato, F. T. M. Spieksma, & S. Bonini (Eds.), Allergenic pollen and pollinosis in Europe (pp. 36–44). Oxford: Blackwell.

    Google Scholar 

  • Mimet, A., Pellsier, V., Quénol, H., Aguejdad, R., Dubreuil, V., & Rozé, H. (2009). Urbanisation induces early flowering: evidence from Platanus acerifolia and Prunus cerasus. International Journal of Biometeorology, 53, 287–298.

  • Nitiu, D. S., & Mallo, A. C. (2002). Incidence of allergenic pollen of Acer spp., Fraxinus spp. and Platanus spp. in the city of La Plata, Argentina: Preliminary results. Aerobiologia, 18, 65–710.

    Article  Google Scholar 

  • Obtułowicz, K. (1994). Aerobiology in Poland. In S. Nilson (Ed.), European aerobiology (pp. 36–45). Stockholm: Swedish Museum of Natural History.

    Google Scholar 

  • Obtułowicz, K., Szczepanek, K., Radwan, J., Grzywacz, M., Adamus, K., & Szczeklik, A. (1991). Correlation between airborne pollen incidence, skin prick test and serum immunoglobulins in allergic people in Cracow, Poland. Grana, 30, 136–141.

    Article  Google Scholar 

  • Oliveira, M., Ribeiro, H., Delgado J. L., & Abreu I. (2009). Seasonal and intradiurnal variation of allergenic fungal spores in urban and rural areas of the North of Portugal. Aerobiologia, 25, 85–98.

    Google Scholar 

  • Piotrowska, K., & Weryszko-Chmielewska, E. (2006). Ambrosia pollen in the air of Lublin, Poland. Aerobiologia, 22, 151–158.

    Article  Google Scholar 

  • Raynor, G. S., Ogden, E. C., & Hayes, J. V. (1975). Spatial variability in airborne pollen concentrations. Journal of Allergy Clinical Immunology, 55, 195–201.

    Article  CAS  Google Scholar 

  • Ring, J., Kramer, U., Schafer, T., & Behrendt, H. (2001). Why are allergies increasing? Current Opinions in Immunology, 13, 707–708.

    Google Scholar 

  • Sanchez-Mesa, J. A., Smith, M., Emberlin, J., Allitt, U., & Caulton, E. (2003). Characteristics of grass pollen seasons in areas of southern Spain and the United Kingdom. Aerobiologia, 19, 243–250.

    Article  Google Scholar 

  • Šikoparija, B., Radišić, P., Pejak, T., & Šimić, S. (2006). Airborne grass and ragweed pollen in the southern panonnian Valley–consideration of rural and urban environment. Annals of Agricultural Environmental Medicine, 13, 263–266.

    Google Scholar 

  • Spieksma, F. T. M., van Noort, P., & Nikkels, H. (2000). Influence of nearby stands of Artemisia on street-level versus roof-top-level ratio’s of airborne pollen quantities. Aerobiologia, 16, 21–24.

    Article  Google Scholar 

  • Subiza, J. (2001). How to interpret pollen counts. Alergologia Inmunología Clinica, 16, 59–65.

    Google Scholar 

  • Unger, J. (1999). Comparison of urban and rural bioclimatological conditions in the case of a Central-European city. International Journal of Biometeorology, 43, 139–144.

    Article  CAS  Google Scholar 

  • Ziska, L. H., Bunce, J. A., & Goins, E. W. (2004). Characterization of an urban-rural CO2/temperature gradient and associated changes in initial plant productivity during secondary succession. Oecologia, 139, 454–458.

    Article  CAS  Google Scholar 

  • Ziska, L. H., Gebhard, D. E., Frenz, D. A., Faulkner, S., Singer, B. D., & Straka, J. G. (2003). Cities as harbingers of climate change: Common ragweed, urbanization, and public health. Journal of Allergy Clinical Immunology, 111, 290–295.

    Article  Google Scholar 

Download references

Acknowledgments

This work was partly funded by the European Union’s Sixth Framework Programme through the Marie Curie Actions Transfer of Knowledge Development Scheme. European project MTKD-CT-2004-003170. Polish Ministry of Education and Science grant 128/E-366/6 PR UE/DIE265.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Javier Rodríguez-Rajo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríguez-Rajo, F.J., Fdez-Sevilla, D., Stach, A. et al. Assessment between pollen seasons in areas with different urbanization level related to local vegetation sources and differences in allergen exposure. Aerobiologia 26, 1–14 (2010). https://doi.org/10.1007/s10453-009-9138-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-009-9138-2

Keywords

Navigation