Skip to main content

Advertisement

Log in

Depth-related plasticity in the diet composition of Pseudechinus magellanicus (Echinoidea, Temnopleuridae) in nearshore environments off central Patagonia, Argentina

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

Pseudechinus magellanicus is one of the most abundant sea urchins in southern South America, but many aspects of its feeding ecology in nearshore environments remain unknown. Here, we aimed to analyze the variability of the diet composition along a coastal depth gradient from intertidal tidepools to upper circalittoral zones and examine the relation between seaweed availability and the diet composition at intertidal tidepools. A total of 118 food items, including seaweeds and animal components, were identified. The diet composition showed a large variation between the different coastal habitats present along the depth gradient studied. In tidepools, articulate coralline seaweeds (Corallina spp.), mussel shell fragments and small crustaceans were frequent in the gut contents, suggesting that this species behaves like a general omnivore but can also act as a mussel bioeroder when consuming epizoic algae and microeuendolithic organisms. In intertidal tidepools, the species showed a negative preference toward typical species of late successional stages such as Dictyota dichotoma, Adenocystis utricularis, Codium fragile and Chondria macrocarpa. Sea urchins from kelp forests showed higher dietary diversity than those from intertidal and deeper subtidal habitats, but with prevalence of kelps. At upper circalittoral soft bottoms, diverse detrital items as benthic diatoms, cyanobacteria and drifted algae were observed in gut contents, usually associated with fine sediments, indicating that P. magellanicus captures drifted algae and behaves like a biofilm feeder. This trophic plasticity may allow this species to occupy contrasting habitats and may also contribute to explain its wide distribution in southern South America.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Code availability

Not applicable.

Data availability

Available upon request.

References

  • Amsler CD, Fairhead VA (2005) Defensive and sensory chemical ecology of brown algae. Adv Bot Res 43:1–91. https://doi.org/10.1016/S0065-2296(05)43001-3

    Article  CAS  Google Scholar 

  • Amsler CD, Iken K, McClintock JB, Amsler MO, Peters KJ, Hubbard JM, Furrow FB, Baker BJ (2005) Comprehensive evaluation of the palatability and chemical defenses of subtidal macroalgae from the Antarctic Peninsula. Mar Ecol Prog Ser 294:141–159

    Article  CAS  Google Scholar 

  • Anderson RJ, Velimirov B (1982) An experimental investigation of the palatability of kelp bed algae to the sea urchin Parechinus angulosus Leske. Mar Ecol 3:357–373. https://doi.org/10.1111/j.1439-0485.1982.tb00284.x

    Article  Google Scholar 

  • Barrales HL, Lobban CS (1975) The comparative ecology of Macrocystis pyrifera, with emphasis on the forests of Chubut, Argentina. J Ecol 63:657–677. https://doi.org/10.2307/2258743

    Article  Google Scholar 

  • Bernasconi I (1953) Monografía de los equinoideos argentinos. Anales Mus Hist Nat Montevideo Ser 6:1–58

    Google Scholar 

  • Bertness MD (1999) The ecology of Atlantic shorelines. Sinauer Associates, Sunderland

    Google Scholar 

  • Boraso de Zaixso AL, Piriz ML (1975) Las especies del género Codium (Chlorophyta) en el litoral argentino. Physis sec A 69:245–256

    Google Scholar 

  • Briscoe CS, Sebens KP (1988) Omnivory in Strongylocentrotus droebachiensis (Müller) (Echinodermata: Echinoidea): predation on subtidal mussels. J Exp Mar Biol Ecol 115:1–24. https://doi.org/10.1016/0022-0981(88)90186-4

    Article  Google Scholar 

  • Brogger MI, Gil DG, Rubilar T, Martinez MI, Diaz de Vivar ME, Escolar M, Epherra L, Pérez AF, Tablado A (2013) Echinoderms from Argentina: biodiversity, distribution and current state of knowledge. In: Alvarado JJ, Solís-Marín FA (eds) Echinoderm Research and Diversity in Latin America. Springer, Berlin, pp 359–402

    Chapter  Google Scholar 

  • Bulleri F, Benedetti-Cecchi L, Cinelli F (1999) Grazing by the sea urchins Arbacia lixula L. and Paracentrotus lividus Lam. in the Northwest Mediterranean. J Exp Mar Biol Ecol 241:81–95. https://doi.org/10.1016/S0022-0981(99)00073-8

    Article  Google Scholar 

  • Castilla JC (1985) Food webs and functional aspects of the kelp, Macrocystis pyrifera, community in the Beagle Channel, Chile. In: Siegfried WR, Condy PR, Laws RM (eds) Antarctic nutrient cycles and food webs. Springer, Berlin, pp 407–414

    Chapter  Google Scholar 

  • Castilla JC, Moreno CA (1982) Sea urchins and Macrocystis pyrifera: Experimental test of their ecological relations in southern Chile. In: Lawrence JM (Ed) Echinoderms: proceedings of the international echinoderm conference, Tampa Bay. AA Balkema, Rotterdam, pp 257–263

  • Chapman ARO, Johnson CR (1990) Disturbance and organization of macroalgal assemblages in the Northwest Atlantic. Hydrobiol 192:77–121. https://doi.org/10.1007/BF00006228

    Article  Google Scholar 

  • Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143. https://doi.org/10.1111/j.1442-9993.1993.tb00438.x

    Article  Google Scholar 

  • Clarke KR, Warwick RM (2001) Change in marine communities: an approach to statistical analysis and interpretation. PRIMER-E, Plymouth

    Google Scholar 

  • Contreras S, Castilla JC (1987) Feeding behavior and morphological adaptations in two sympatric sea urchin species in central Chile. Mar Ecol Prog Ser 38:217–224

    Article  Google Scholar 

  • Day RW, Quinn GP (1989) Comparisons of treatments after an analysis of variance in ecology. Ecol Monogr 59:433–463. https://doi.org/10.2307/1943075

    Article  Google Scholar 

  • de Ridder C, Lawrence JM (1982) Food and feeding mechanisms: Echinoidea. In: Jangoux M, Lawrence JM (eds) Echinoderm nutrition. AA Balkema, Rotterdam, pp 499–519

    Google Scholar 

  • Diez ME, Vázquez N, da Cunha LP, Cremonte F (2016) Biogenic calcareous growth on the ribbed mussel Aulacomya atra (Bivalvia: Mytilidae) favours polydorid boring (Polychaeta: Spionidae). Hydrobiologia 766:349–355. https://doi.org/10.1007/s10750-015-2467-y

    Article  Google Scholar 

  • Dixon J, Schroeter SC, Kastendiek J (1981) Effects on the encrusting bryozoan, Membranipora membranacea, on the loss of blades and fronds by the giant kelp, Macrocystis pyrifera (Laminariales). J Phycol 17:341–345. https://doi.org/10.1111/j.1529-8817.1981.tb00860.x

    Article  Google Scholar 

  • Dupont S, Thorndyke M (2013) Direct impacts of near-future ocean acidification on sea urchins. In: Fernández-Palacios JM, de Nascimento L, Hernández JC, Clemente S, González A, Díaz-González JP (eds) Climate change perspective from the Atlantic: past, present and future. Universidad de La Laguna, Tenerife, pp 461–485

    Google Scholar 

  • Endo H, Nakabayashi N, Agatsuma Y, Taniguchi K (2007) Food of the sea urchins Strongylocentrotus nudus and Hemicentrotus pulcherrimus associated with vertical distributions in fucoid beds and crustose coralline flats in northern Honshu, Japan. Mar Ecol Prog Ser 352:125–135

    Article  Google Scholar 

  • Epherra L (2016) Evaluación del impacto de invertebrados herbívoros nativos sobre el alga invasora Undaria pinnatifida: Arbacia dufresnii (Echinodermata: Echinoidea) como modelo de estudio. Doctoral Dissertation, Universidad Nacional de Mar del Plata

  • Epherra L, Gil DG, Rubilar T, Perez-Gallo S, Reartes MB, Tolosano JA (2015) Temporal and spatial differences in the reproductive biology of the sea urchin Arbacia dufresnii. Mar Freshw Res 66:329–342. https://doi.org/10.1071/MF14080

    Article  Google Scholar 

  • Erickson AA, Paul VJ, Van Alstyne KL, Kwiatkowski LM (2006) Palatability of macroalgae that use different types of chemical defenses. J Chem Ecol 32:1883–1895. https://doi.org/10.1007/s10886-006-9116-x

    Article  CAS  PubMed  Google Scholar 

  • Fernández M, Carreto J, Mora J, Roux A (2005) Physico-chemical characterization of the benthic ambient of Golfo San Jorge, Argentina. J Mar Biol Assoc UK 85:1317–1328. https://doi.org/10.1017/S002531540501249X

    Article  CAS  Google Scholar 

  • Gagnon P, Himmelman JH, Johnson LE (2004) Temporal variation in community interfaces: kelp-bed boundary dynamics adjacent to persistent urchin barrens. Mar Biol 144:1191–1203. https://doi.org/10.1007/s00227-003-1270-x

    Article  Google Scholar 

  • Gil DG (2015) Biología y ecología del erizo de mar Pseudechinus magellanicus (Echinoidea: Temnopleuridae) en Patagonia Central. Doctoral Dissertation, Universidad Nacional de La Plata

  • Gil DG, Lopretto EC, Zaixso HE (2020) Reproductive timing and synchronized reproduction of the sea urchin Pseudechinus magellanicus (Echinoidea: Temnopleuridae) in central Patagonia, Argentina. Mar Biol Res 16:311–326. https://doi.org/10.1080/17451000.2020.1772493

    Article  Google Scholar 

  • Govenkar MB, Wahidulla S (2000) Constituents of Chondria armata. Phytochemistry 54:979–981. https://doi.org/10.1016/S0031-9422(00)00078-9

    Article  CAS  PubMed  Google Scholar 

  • Hammer H, Hammer B, Watts S, Lawrence A, Lawrence J (2006) The effect of dietary protein and carbohydrate concentration on the biochemical composition and gametogenic condition of the sea urchin Lytechinus variegatus. J Exp Mar Biol Ecol 334:109–121. https://doi.org/10.1016/j.jembe.2006.01.015

    Article  CAS  Google Scholar 

  • Harrold C, Reed DC (1985) Food availability, sea urchin grazing, and kelp forest community structure. Ecology 66:1160–1169. https://doi.org/10.2307/1939168

    Article  Google Scholar 

  • Hidalgo FJ, Firstater FN, Lomovasky BJ, Iribarne OO (2013) Grazing effects of the sea urchin Tetrapygus niger and the snail Tegula atra on a rocky shore of central Peru. J Mar Biol Assoc UK 93:2059–2066. https://doi.org/10.1017/S0025315413000994

    Article  Google Scholar 

  • Hill NA, Blount C, Poore AG, Worthington D, Steinberg PD (2003) Grazing effects of the sea urchin Centrostephanus rodgersii in two contrasting rocky reef habitats: effects of urchin density and its implications for the fishery. Mar Freshw Res 54:691–700. https://doi.org/10.1071/MF03052

    Article  Google Scholar 

  • Himmelman JH, Steele DH (1971) Foods and predators of the green sea urchin Strongylocentrotus droebachiensis in Newfoundland waters. Mar Biol 9:315–322. https://doi.org/10.1007/BF00372825

    Article  Google Scholar 

  • Hughes AD, Brunner L, Cook EJ, Kelly MS, Wilson B (2012) Echinoderms display morphological and behavioural phenotypic plasticity in response to their trophic environment. PLoS ONE 7:e41243. https://doi.org/10.1371/journal.pone.0041243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes RN (1980) Optimal foraging theory in the marine context. Oceanogr Mar Biol 18:423–481

    Google Scholar 

  • Jacob U, Terpstra S, Brey T (2003) High-Antarctic regular sea urchins–the role of depth and feeding in niche separation. Polar Biol 26:9–104. https://doi.org/10.1007/s00300-002-0453-0

    Article  Google Scholar 

  • Kaminsky J, Varisco M, Fernández M, Sahade R, Archambault P (2018) Spatial analysis of benthic functional biodiversity in San Jorge Gulf, Argentina. Oceanography 31:104–112. https://doi.org/10.5670/oceanog.2018.414

    Article  Google Scholar 

  • Kelly MS, Hughes AD, Cook EJ (2007) Ecology of Psammechinus miliaris. In: Lawrence JM (ed) Edible sea urchins: Biology and ecology. Academic Press, London, pp 287–296

    Chapter  Google Scholar 

  • Kenner MC (1992) Population dynamics of the sea urchin Strongylocentrotus purpuratus in a Central California kelp forest: recruitment, mortality, growth, and diet. Mar Biol 112:107–118. https://doi.org/10.1007/BF00349734

    Article  Google Scholar 

  • Kiirikki M (1996) Experimental evidence that Fucus vesiculosus (Phaeophyta) controls filamentous algae by means of the whiplash effect. Eur J Phycol 31:61–66. https://doi.org/10.1080/09670269600651201

    Article  Google Scholar 

  • Larrain AP (1975) Los equinoideos regulares fósiles y recientes de Chile. Gayana 35:5–189

    Google Scholar 

  • Larson BR, Vadas RL, Keser M (1980) Feeding and nutritional ecology of the sea urchin Strongylocentrotus drobachiensis in Maine, USA. Mar Biol 59:49–62. https://doi.org/10.1007/BF00396982

    Article  Google Scholar 

  • Lauzon-Guay JS, Scheibling RE (2007) Seasonal variation in movement, aggregation and destructive grazing of the green sea urchin (Strongylocentrotus droebachiensis) in relation to wave action and sea temperature. Mar Biol 151:2109–2118. https://doi.org/10.1007/s00227-007-0668-2

    Article  Google Scholar 

  • Lauzon-Guay JS, Scheibling RE, Barbeau MA (2006) Movement patterns in the green sea urchin, Strongylocentrotus droebachiensis. J Mar Biol Assoc UK 86:167–174. https://doi.org/10.1017/S0025315406012999

    Article  Google Scholar 

  • Lawrence JM (1975) On the relationship between marine plants and sea urchins. Oceanogr Mar Biol Ann Rev 13:213–286

    Google Scholar 

  • Lawrence JM, Lawrence AL, Watts SA (2013) Feeding, digestion and digestibility of sea urchins. In: Lawrence JM (ed) Developments in aquaculture and fisheries science, vol 38. Elsevier, Amsterdam, pp 135–154

    Google Scholar 

  • Littler MM, Littler DS (1980) The evolution of thallus form and survival strategies in benthic marine macroalgae: field and laboratory tests of a functional form model. Am Nat 116:25–44. https://doi.org/10.1086/283610

    Article  Google Scholar 

  • Lubchenco J (1978) Plant species diversity in a marine intertidal community: importance of herbivore food preference and algal competitive abilities. Am Nat 112:23–39. https://doi.org/10.1086/283250

    Article  Google Scholar 

  • Lubchenco J, Gaines SD (1981) A unified approach to marine plant-herbivore interactions. I. Populations and communities. Annu Rev Ecol Systemat 12:405–437. https://doi.org/10.1146/annurev.es.12.110181.002201

    Article  Google Scholar 

  • Lyons DA, Van Alstyne KL, Scheibling RE (2007) Anti-grazing activity and seasonal variation of dimethylsulfoniopropionate-associated compounds in the invasive alga Codium fragile ssp. tomentosoides. Mar Biol 153:179–188. https://doi.org/10.1007/s00227-007-0795-9

    Article  CAS  Google Scholar 

  • Meidel SK, Scheibling RE (1999) Effects of food type and ration on reproductive maturation and growth of the sea urchin Strongylocentrotus droebachiensis. Mar Biol 134:155–166. https://doi.org/10.1007/s002270050534

    Article  Google Scholar 

  • Michel LN, David B, Dubois P, Lepoint G, de Ridder C (2016) Trophic plasticity of Antarctic echinoids under contrasted environmental conditions. Polar Biol 39:913–923. https://doi.org/10.1007/s00300-015-1873-y

    Article  Google Scholar 

  • Nestler EC, Harris LG (1994) The importance of omnivory in Strongylocentrotus droebachiensis (Müller) in the gulf of Maine. In: David B, Guille A, Féral JP, Roux M (eds) Echinoderms trough time. AA Balkema, Rotterdam, pp 813–818

    Google Scholar 

  • O’Connor NE, Donohue I, Crowe TP, Emmerson MC (2011) Importance of consumers on exposed and sheltered rocky shores. Mar Ecol Prog Ser 443:65–67

    Article  Google Scholar 

  • O’Leary JK, Potts D, Schoenrock KM, McClahanan TR (2013) Fish and sea urchin grazing opens settlement space equally but urchins reduce survival of coral recruits. Mar Ecol Prog Ser 493:165–177

    Article  Google Scholar 

  • Orler PM (1992) Biología reproductiva comparada de Pseudechinus magellanicus y Loxechinus albus, equinoideos del Canal Beagle. Doctoral Dissertation, Universidad Nacional de la Plata

  • Paine RT, Vadas RL (1969) The effects of grazing by sea urchins, Strongylocentrotus spp., on benthic algal populations. Limnol Oceanogr 14:710–719. https://doi.org/10.4319/lo.1969.14.5.0710

    Article  Google Scholar 

  • Pawson DL (1966) The echinoidea collected by the Royal Society of London expedition to southern Chile, 1958–1959. Pac Sci 20:206–211

    Google Scholar 

  • Penchaszadeh PE, Bigatti G, Miloslavich P (2004) Feeding of Pseudechinus magellanicus (Philippi, 1857) (Echinoidea: Temnopleuridae) in the SW Atlantic coast (Argentina). Ophelia 58:91–99. https://doi.org/10.1080/00785326.2004.10410216

    Article  Google Scholar 

  • Perreault MC, Borgeaud IA, Gaymer CF (2014) Impact of grazing by the sea urchin Tetrapygus niger on the kelp Lessonia trabeculata in Northern Chile. J Exp Mar Biol Ecol 453:22–27. https://doi.org/10.1016/j.jembe.2013.12.021

    Article  Google Scholar 

  • Pierrat B, Saucède T, Festeau A, David B (2012) Antarctic, Sub-Antarctic and cold temperate echinoid database. ZooKeys 204:47–52

    Article  Google Scholar 

  • Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Retana MV, Lewis MN (2017) Suitable habitat for marine mammals during austral summer in San Jorge Gulf, Argentina. Rev Biol Mar Oceanogr 52:275–288

    Article  Google Scholar 

  • Richardson CM, Lawrence JM, Watts SA (2011) Factors leading to cannibalism in Lytechinus variegatus (Echinodermata: Echinoidea) held in intensive culture. J Exp Mar Biol Ecol 399:68–75. https://doi.org/10.1016/j.jembe.2011.01.018

    Article  Google Scholar 

  • Ríos C, Mutschke E, Cariceo Y (2003) Estructura poblacional de Pseudechinus magellanicus (Philippi 1857) (Echinoidea: Temnopleuridae) en grampones de la macroalga sublitoral Macrocystis Pyrifera (L.) C. Agardh en el Estrecho de Magallanes. Chile An Inst Patag Chile 31:75–86

    Google Scholar 

  • Rodríguez SR, Fariña JM (2001) Effect of drift kelp on the spatial distribution pattern of the sea urchin Tetrapygus niger: a geostatistical approach. J Mar Biol Assoc UK 81:179–180. https://doi.org/10.1017/S0025315401003587

    Article  Google Scholar 

  • Roux A, Fernández M, Bremec C (1995) Preliminary survey of the benthic communities of Patagonian shrimp fishing grounds in San Jorge Gulf Argentina. Cienc Mar 21: 295-310

  • Sammarco PW (1982) Effects of grazing by Diadema antillarum Philippi (Echinodermata: Echinoidea) on algal diversity and community structure. J Exp Mar Biol Ecol 65:83–105. https://doi.org/10.1016/0022-0981(82)90177-0

    Article  Google Scholar 

  • Scheibling RE, Hennigar AW, Balch T (1999) Destructive grazing, epiphytism, and disease: the dynamics of sea urchin-kelp interactions in Nova Scotia. Can J Fish Aquat Sci 56:2300–2314. https://doi.org/10.1139/f99-163

    Article  Google Scholar 

  • Sonnenholzner JI, Montaño-Moctezuma G, Searcy-Bernal R, Salas-Garza A (2011) Effect of macrophyte diet and initial size on the survival and somatic growth of sub-adult Strongylocentrotus purpuratus: a laboratory experimental approach. J App Phycol 23:505–513. https://doi.org/10.1007/s10811-010-9619-2

    Article  Google Scholar 

  • St-Onge G, Ferreyra GA (2018) Introduction to the special issue on the Gulf of San Jorge (Patagonia, Argentina). Oceanography 31:14–15

    Article  Google Scholar 

  • Thiesen BF (1972) Shell cleaning and deposit feeding in Mytilus edulis (Bivalvia). Ophelia 10:49–55. https://doi.org/10.1080/00785326.1972.10430101

    Article  Google Scholar 

  • Uthicke S, Schaffelke B, Byrne M (2009) A boom-bust phylum? Ecological and evolutionary consequences of density variations in echinoderms. Ecol Monogr 79:3–24. https://doi.org/10.1890/07-2136.1

    Article  Google Scholar 

  • Vadas RL, Elner RW, Garwood PE, Babb IG (1986) Experimental evaluation of aggregation behavior in the sea urchin Strongylocentrotus droebachiensis. Mar Biol 90:433–448. https://doi.org/10.1007/BF00428567

    Article  Google Scholar 

  • Vance RR, Schmitt RJ (1979) The effect of the predator-avoidance behavior of the sea urchin, Centrostephanus coronatus, on the breadth of its diet. Oecologia 44:21–25. https://doi.org/10.1007/BF00346391

    Article  CAS  PubMed  Google Scholar 

  • Vanderklift MA, Kendrick GA, Smit AJ (2006) Differences in trophic position among sympatric sea urchin species. Estuar Coast Shelf Sci 66:291–297. https://doi.org/10.1016/j.ecss.2005.09.004

    Article  Google Scholar 

  • Vásquez JA (2007) Ecology of Loxechinus albus. In: Lawrence JM (ed) Sea urchins: biology and ecology. Academic Press, London, pp 227–241

    Chapter  Google Scholar 

  • Vásquez JA, Buschmann AH (1997) Herbivore-kelp interactions in Chilean subtidal communities: a review. Rev Chil Hist Nat 70:41–52

    Google Scholar 

  • Vásquez JA, Castilla JC, Santelices B (1984) Distributional patterns and diets of four species of sea urchins in giant kelp forest (Macrocystis pyrifera) of Puerto Toro, Navarino Island, Chile. Mar Ecol Prog Ser 19:55–63

    Article  Google Scholar 

  • Verga RN, Tolosano JA, Cazzaniga NJ, Gil DG (2020) Assessment of seawater quality and bacteriological pollution of rocky shores in the central coast of San Jorge Gulf (Patagonia, Argentina). Mar Pollut Bull 150:110749. https://doi.org/10.1016/j.marpolbul.2019.110749

    Article  CAS  PubMed  Google Scholar 

  • Wangensteen OS, Turon X, García-Cisneros A, Recasens M, Romero J, Palacín C (2011) A wolf in sheep’s clothing: carnivory in dominant sea urchins in the Mediterranean. Mar Ecol Prog Ser 441:117–128

    Article  Google Scholar 

  • Westermeier R, Murúa P, Patiño DJ, Muñoz L, Müller DG (2016) Holdfast fragmentation of Macrocystis pyrifera (integrifolia morph) and Lessonia berteroana in Atacama (Chile): a novel approach for kelp bed restoration. J Appl Phycol 28:2969–2977

    Article  Google Scholar 

  • Wright JT, Dworjanyn SA, Rogers CN, Steinberg PD, Williamson JE, Poore AG (2005) Density-dependent sea urchin grazing: differential removal of species, changes in community composition and alternative community states. Mar Ecol Prog Ser 298:143–156

    Article  Google Scholar 

  • Yatsuya K, Nakahara H (2004) Diet and stable isotope ratios of gut contents and gonad of the sea urchin Anthocidaris crassispina (A. Agassiz) in two different adjacent habitats, the Sargassum area and Corallina area. Fish Sci 70:285–292

    Article  CAS  Google Scholar 

  • Yorke CE, Page HM, Miller RJ (2019) Sea urchins mediate the availability of kelp detritus to benthic consumers. Proc R Soc B 286:20190846. https://doi.org/10.1098/rspb.2019.0846

    Article  CAS  PubMed  Google Scholar 

  • Zaixso HE, Boraso AL, Pastor de Ward CT, Lizarralde ZI, Dadón J, Galván DE (2015) El bentos costero patagónico. In: Zaixso HE, Boraso A (eds) La zona costera patagónica Argentina. EDUPA, Comodoro Rivadavia, pp 43–152

    Google Scholar 

  • Zaixso HE, Lizarralde ZI (2000) Distribución de equinodermos en el golfo San José y sur del golfo San Matías (Chubut, Argentina). Rev Biol Mar Oceanogr 35:127–145

    Article  Google Scholar 

Download references

Acknowledgements

We dedicate this manuscript to the memory of our co-author Dr. Héctor E. Zaixso, who passed away in 2015 but initiated this and other related echinoderm studies in the Patagonian region. We are also grateful to: Héctor Durbas for scuba-diving assistance, Adrián Cefarelli and Virginia Lo Russo for the identification of diatoms and nematodes, respectively, Mauro Marcinkevicius for sharing submarine photographs of the studied areas (Fig. 1 c and d) and María Victoria Gonzalez Eusevi for improving the English of the manuscript. We thank Martin Brogger and two anonymous reviewers for their constructive comments.

Funding

This work was supported by a UNPSJB research grant provided to DGG (R/7–486/13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damian G. Gil.

Ethics declarations

Conflicts of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Héctor E. Zaixso: Deceased on 29/04/2015.

Handling Editor: Télesphore Sime-Ngando.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gil, D.G., Boraso, A.L., Lopretto, E.C. et al. Depth-related plasticity in the diet composition of Pseudechinus magellanicus (Echinoidea, Temnopleuridae) in nearshore environments off central Patagonia, Argentina. Aquat Ecol 55, 589–606 (2021). https://doi.org/10.1007/s10452-021-09847-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-021-09847-4

Keywords

Navigation