Aquatic Ecology

, Volume 43, Issue 4, pp 815–823 | Cite as

In situ release of coral mucus by Acropora and its influence on the heterotrophic bacteria

  • Ryota Nakajima
  • Teruaki Yoshida
  • Bin Abdul Rahim Azman
  • Kassim Zaleha
  • Bin Haji Ross Othman
  • Tatsuki Toda
Article

Abstract

In situ mucus release by Acropora nobilis and degradation of mucus from A. nobilis and Acropora formosa, by heterotrophic bacteria were investigated at Bidong and Tioman Island, Malaysia. Mucus release rate for A. nobilis was on average 38.7 ± 35.2 mg C m−2 h−1, of which ca. 70% consisted of dissolved organic carbon (DOC) and 30% particulate organic carbon (POC). In the mucus degradation experiment, seawater-mucus mixtures were incubated and compared with control runs for 24 h. Bacterial abundance in the seawater-mucus mixture increased significantly and coincided with a decline in DOC concentration. In controls, bacteria and DOC did not significantly change. The coral mucus had a high content of inorganic phosphate. It is suggested that the coral mucus rich in DOC and phosphate can induce the high bacterial growth.

Keywords

Degradation DOC POC Nutrients Acropora nobilis Acropora formosa 

References

  1. Brown BE, Bythell JC (2005) Perspectives on mucus secretion in reef corals. Mar Ecol Prog Ser 296:291–309. doi:10.3354/meps296291 CrossRefGoogle Scholar
  2. Cotner JB, Bootsma H, Johengen T, Cavaletto JF, Gardner WS (2000) Nutrient limitation of heterotrophic bacteria in Florida Bay. Estuaries 23:611–620. doi:10.2307/1352888 CrossRefGoogle Scholar
  3. Crossland CJ, Barnes DJ (1983) Dissolved nutrients and organic particulates in water flowing over coral reefs at Lizard Island. Aust J Mar Freshw Res 34:835–844. doi:10.1071/MF9830835 CrossRefGoogle Scholar
  4. Crossland CJ, Barnes DJ, Borowitzka MA (1980) Diurnal lipid and mucus production in the staghorn coral Acropora acuminate. Mar Biol (Berl) 60:81–90. doi:10.1007/BF00389151 CrossRefGoogle Scholar
  5. Davies PS (1984) The role of zooxanthellae in the nutritional energy requirements of Pocillopora eydouxi. Coral Reefs 2:181–186Google Scholar
  6. Ducklow HW (1990) The biomass, production and fate of bacteria in coral reefs. In: Dubinsky Z (ed) Coral reefs, ecosystems of the world, vol 25. Elsevier, Amsterdam, pp 265–289Google Scholar
  7. Ducklow HW, Mitchell R (1979) Bacterial populations and adaptations in the mucus layers on living corals. Limnol Oceanogr 24:715–725Google Scholar
  8. Ferrier-Pagès C, Leclercq N, Jaubert J, Pelegrì S P (2000) Enhancement of pico- and nanoplankton growth by coral exudates. Aquat Microb Ecol 21:203–209. doi:10.3354/ame021203 CrossRefGoogle Scholar
  9. Herndl GJ, Velimirov B (1986) Microheterotrophic utilizationof mucus released by the Mediterranean coral Cladocora cespitosa. Mar Biol (Berl) 90:363–369. doi:10.1007/BF00428560 CrossRefGoogle Scholar
  10. Hubbard JAE, Pocock YP (1972) Sediment-rejection by recent scleractinian corals: a key to palaeo-environmental reconstruction. Geol Rundsch 61:598–626. doi:10.1007/BF01896337 CrossRefGoogle Scholar
  11. Krupp DA (1984) Mucus production by corals exposed during an extreme low tide. Pac Sci 38:1–11Google Scholar
  12. Linley EAS, Koop K (1986) Significance of pelagic bacteria as a trophic resource in a coral reef lagoon, One Tree Island, Great Barrier Reef. Mar Biol (Berl) 92:457–464. doi:10.1007/BF00392505 CrossRefGoogle Scholar
  13. Means J, Sigleo A (1986) Contribution of coral reef mucus to the colloidal organic pool in the vicinity of Discovery Bay, Jamaica, West-Indies. Bull Mar Sci 39:110–118Google Scholar
  14. Moriarty DJW, Pollard PC, Hunt WG (1985a) Tempral and spatial variation in bacterial production in the water column over a coral reef. Mar Biol (Berl) 85:285–292. doi:10.1007/BF00393249 CrossRefGoogle Scholar
  15. Moriarty DJW, Pollard PC, Alongi DM, Wilkinson CR, Gray JS (1985b) Bacterial productivity and trophic relationships with consumers on a coral reef (Mecor I). In: proceedings of 5th international coral reef symposium, vol 3. Tahiti, pp 457–462 Google Scholar
  16. Muscatine L, Falkowski PG, Porter JW, Dubinsky Z (1984) Fate of photosynthetically fixed carbon in light- and shedeadapted colonies of the symbiotic coral Stylophora pistillata. Proc R Soc Lond B Biol Sci 222:181–202CrossRefGoogle Scholar
  17. Nagao N, Toda T, Takahashi K, Hamasaki K, Kikuchi T, Taguchi S (2001) High ash content in net-plankton samples from shallow coastal water: possible source of error in dry weight measurement of zooplankton biomass. J Oceanogr 57:105–107. doi:10.1023/A:1016050728836 CrossRefGoogle Scholar
  18. Ogawa H, Usui T, Koike I (2003) Distribution of dissolved oraganic carbon in the East China Sea. Deep Sea Res Part II Top Stud Oceanogr 50:353–366. doi:10.1016/S0967-0645(02)00459-9 CrossRefGoogle Scholar
  19. Parsons TR, Maita Y, Lalli CM (1984) A manual of chemical and biological methods for seawater analysis. Permagon Press, OxfordGoogle Scholar
  20. Richman S, Loya Y, Slobodkin LB (1975) The rate of mucus production by corals and its assimilation by the coral reef copepod Acartia negligens. Limnol Oceanogr 20:918–923CrossRefGoogle Scholar
  21. Shibata A, Goto Y, Saito H, Kikuchi T, Toda T, Taguchi S (2006) Comparison of SYBR Green I and SYBR Gold stains for enumerating bacteria and viruses by epifluorescence microscopy. Aquat Microb Ecol 43:221–231. doi:10.3354/ame043223 CrossRefGoogle Scholar
  22. Tanaka Y, Miyajima T, Umezawa Y, Fukuda H, Koike I, Ogawa H et al. (2006) Effect of nitrate enrichment on release of dissolved organic carbon and nitrogen from zooxanthellate coral, Acropora pulchra and Porites cylindrica. In: proceedings 10th international of coral reef symposium. Okinawa, Japan, pp 925–931Google Scholar
  23. Tanaka Y, Miyajima T, Koike I, Hayashibara T, Ogawa H (2008) Production of dissolved and particulate organic matter by the reef-building corals Porites cylindrica and Acropora pulchra. Bull Mar Sci 82:237–245Google Scholar
  24. Teai T, Drollet JH, Bianchini J-P, Cambon A, Martin PMV (1998) Occurrence of ultraviolet radiation-absorbing mycosporine-like amino acids in coral mucus and whole corals of French Polynesia. Mar Freshw Res 49:127–132. doi:10.1071/MF97051 CrossRefGoogle Scholar
  25. van Duyl FC, Gast GJ (2001) Linkage of small-scale spatial variations in DOC, inorganic nutrients and bacterioplankton growth with different coral reef water types. Aquat Microb Ecol 24:17–26. doi:10.3354/ame024017 CrossRefGoogle Scholar
  26. Wild C, Huettel M, Klueter A, Kremb SG, Rasheed M, Jørgensen BB (2004a) Coral mucus functions as an energy carrier and particle trap in the reef ecosystem. Nature 428:66–70. doi:10.1038/nature02344 CrossRefPubMedGoogle Scholar
  27. Wild C, Rasheed M, Werner U, Franke U, Johnstone R, Huettel M (2004b) Degradation and mineralization of coral mucus in reef environments. Mar Ecol Prog Ser 267:159–171. doi:10.3354/meps267159 CrossRefGoogle Scholar
  28. Wild C, Woyt H, Huettel M (2005) Influence of coral mucus on nutrient fluxes in carbonate sands. Mar Ecol Prog Ser 287:87–98. doi:10.3354/meps287087 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Ryota Nakajima
    • 1
  • Teruaki Yoshida
    • 2
  • Bin Abdul Rahim Azman
    • 2
  • Kassim Zaleha
    • 3
  • Bin Haji Ross Othman
    • 2
  • Tatsuki Toda
    • 1
  1. 1.Department of Environmental Engineering for Symbiosis, Faculty of EngineeringSoka UniversityHachiojiJapan
  2. 2.Marine Ecosystem Research Centre, Faculty of Science and TechnologyUniversiti Kebangsaan MalaysiaBangiMalaysia
  3. 3.Institute of Tropical AquacultureUniversiti Malaysia TerengganuKuala TerengganuMalaysia

Personalised recommendations