Skip to main content
Log in

Effect of KOH-N2/CO/air activation on the performance of coconut shell activated carbon for low temperature NH3 removal NO

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

This study investigates the effects of different combinations of potassium hydroxide (KOH)–nitrogen (N2)/carbon monoxide (CO)/air activation on the low-temperature ammonia (NH3) removal NO performance of coconut shell-activated carbon. KOH–N2-combined activation resulted in expanded pores of activated carbon, while high temperatures caused structural collapse. While increasing the activation temperature induced larger average pore sizes, introducing nitrogen-containing functional groups on the surface positively affected the NO conversion rate. Furthermore, while KOH–CO2-combined activation yielded activated carbon with denser and more ordered pore structures upon increasing activation temperature, a relatively large specific surface area and total pore volume were also observed. Introducing functional groups such as C = C on the surface yielded a higher overall NO conversion rate. Although KOH–air activation resulted in developed porous structures, some pore sizes were blocked, thereby yielding a smaller specific surface area. Nevertheless, introducing nitrogen-containing functional groups contributed to an overall increase in the NO conversion rate. Orthogonal experimental analysis revealed that activation time significantly impacted the physical activation process of KOH-activated carbon, followed by activation temperature, with activation gas minimally affecting the activated carbon structure and NO conversion rate. Notably, the optimal activation conditions included 1-h activated carbon activation in 3 mol/L of KOH, followed by 1-h CO2 activation at 150℃.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Gao, F.Y., Chu, C., Zhu, W.J., Tang, X.L., Yi, H.H., Zhang, R.C.: High-efficiency catalytic oxidation of nitric oxide over spherical Mn-Co spinel catalyst at low temperature. Appl. Surf. Sci. 479, 548–556 (2019)

    Article  CAS  Google Scholar 

  2. Hao, J.M., Tian, H.Z., Lu, Y.Q.: Emission inventories of NOx from commercial energy consumption in China. Environ. Sci. Technol. 36(4), 552–560 (2002)

    Article  CAS  PubMed  Google Scholar 

  3. Rubio, B., Izquierdo, M.T.: Low cost adsorbents for low temperature cleaning of flue gases. Fuel. 77(6), 631–637 (1998)

    Article  CAS  Google Scholar 

  4. Li, K., Tang, X.L., Yi, H.H., Ning, P., Kang, D.J., Wang, C.: Low-temperature catalytic oxidation of NO over Mn-Co-Ce-Ox catalyst. Chem. Eng. J. 192, 99–104 (2012)

    Article  CAS  Google Scholar 

  5. Abdulrasheed, A.A., Jalil, A.A., Triwahyono, S., Zaini, M.A.A., Gambo, Y., Ibrahim, M.: Surface modification of activated carbon for adsorption of SO2 and NOx: A review of existing and emerging technologies. Renew. Sust Energ. Rev. 94, 1067–1085 (2018)

    Article  CAS  Google Scholar 

  6. Cui, L., Lu, J.W., Song, X.D., Tang, L.S., Li, Y.Z., Dong, Y.: Energy conservation and efficiency improvement by coupling wet flue gas desulfurization with condensation desulfurization. Fuel. 285, 119209 (2021)

    Article  CAS  Google Scholar 

  7. Yi, H., Nakabayashi, K., Yoon, S.H., Miyawaki, J.: Pressurized physical activation: A simple production method for activated carbon with a highly developed pore structure. Carbon. 183, 735–742 (2021)

    Article  CAS  Google Scholar 

  8. Lillo-Ródenas, M.A., Cazorla-Amorós, D., Linares-Solano, A.: Understanding chemical reactions between carbons and NaOH and KOH: An insight into the chemical activation mechanism. Carbon. 41, 267–275 (2003)

    Article  Google Scholar 

  9. Wu, M.B., Zha, Q.F., Qiu, J.S., Guo, Y.S., Shang, H.Y., Yuan, A.J.: Preparation and characterization of porous carbons from PAN-based preoxidized cloth by KOH activation. Carbon. 42, 205–210 (2004)

    Article  CAS  Google Scholar 

  10. Tsai, W.T., Jiang, T.J.: Optimization of physical activation process for activated carbon preparation from water caltrop husk. Biomass Convers. Bior 1–10. (2021)

  11. Alabadi, A.A., Abbood, H.A., Dawood, A.S., Tan, B.: Ultrahigh-CO2 adsorption capacity and CO2/N2 selectivity by nitrogen-doped porous activated carbon monolith. B Chem. Soc. Jpn. 93(3), 421–426 (2020)

    Article  CAS  Google Scholar 

  12. Saad, M.J., Sajab, M.S., Busu, W.N.W., Misran, S., Zakaria, S., Chin, S.X., Chia, C.H.: Comparative adsorption mechanism of rice straw activated carbon activated with NaOH and KOH. Sains Malays. 49(11), 2721–2734 (2020)

    Article  CAS  Google Scholar 

  13. Kalderis, D., Bethanis, S., Paraskeva, P., Diamadopoulos, E.: Production of activated carbon from bagasse and rice husk by a single-stage chemical activation method at low retention times. Bioresource Technol. 99, 6809–6816 (2008)

    Article  CAS  Google Scholar 

  14. Teng, H., Wang, S.C.: Preparation of porous carbons from phenol-formaldehyde resins with chemical and physical activation. Carbon. 38, 817–824 (2000)

    Article  CAS  Google Scholar 

  15. Nowicki, P., Kazmierczak, J., Pietrzak, R.: Comparison of physicochemical and sorption properties of activated carbons prepared by physical and chemical activation of cherry stones. Powder Technol. 269, 312–319 (2015)

    Article  CAS  Google Scholar 

  16. Illingworth, J.M., Rand, B., Williams, P.T.: Non-woven fabric activated carbon produced from fibrous waste biomass for sulphur dioxide control. Process. Saf. Environ. 122, 209–220 (2019)

    Article  CAS  Google Scholar 

  17. Dogan, M., Sabaz, P., Bicil, Z., Kizilduman, B.K., Turhan, Y.: Activated carbon synthesis from tangerine peel and its use in hydrogen storage. J. Energy Inst. 93, 2176–2185 (2020)

    Article  CAS  Google Scholar 

  18. Ahmed, M.J., Theydan, S.K.: Optimization of microwave preparation conditions for activated carbon from albizia lebbeck seed pods for methylene blue dye adsorption. J. Anal. Appl. Pyrol. 105, 199–208 (2014)

    Article  CAS  Google Scholar 

  19. Mazlan, M.A.F., Uemura, Y., Yusup, S., Elhassan, F., Uddin, A., Hiwada, A., Demiya, M.: Activated carbon from rubber wood sawdust by carbon dioxide activation. Procedia Eng. 148, 530–537 (2016)

    Article  CAS  Google Scholar 

  20. Long, H.M., Huang, B.F., Shi, Z., Liu, L.P., Wang, D.F., Li, L.: Physicochemical properties of coconut husk activated carbon modified by Fe(NO3)3 and mn(NO3)2. J. Iron Steel Res. Int. 28(5), 530–537 (2021)

    Article  CAS  Google Scholar 

  21. Nowicki, P., Pietrzak, R., Wachowska, H.: Sorption properties of active carbons obtained from walnut shells by chemical and physical activation. Catal. Today. 150, 107–114 (2010)

    Article  CAS  Google Scholar 

  22. Singh, J., Bhunia, H., Basu, S.: Adsorption of CO2 on KOH activated carbon adsorbents: Effect of different mass ratios. J. Environ. Manage. 250, 109457 (2019)

    Article  CAS  PubMed  Google Scholar 

  23. Zhu, X., Zhang, L.Q., Zhang, M.Z., Ma, C.Y.: Effect of N-doping on NO2 adsorption and reduction over activated carbon: An experimental and computational study. Fuel. 258, 116109 (2019)

    Article  CAS  Google Scholar 

  24. De-souza, L.K.C., Wickramaratne, N.P., Ello, A.S., Costa, M.J.F., Da-costa, C.E.F., Jaroniec, M.: Enhancement of CO2 adsorption on phenolic resin-based mesoporous carbons by KOH activation. Carbon. 65, 334–340 (2013)

    Article  CAS  Google Scholar 

  25. Shahkarami, S., Azargohar, R., Dalai, A.K., Soltan, J.: Breakthrough CO2 adsorption in bio-based activated carbons. J. Environ. Sci. 34, 68–76 (2015)

    Article  CAS  Google Scholar 

  26. Song, M., Jin, B.S., Xiao, R., Yang, L., Wu, Y.M., Zhong, Z.P., Huang, Y.J.: The comparison of two activation techniques to prepare activated carbon from corn cob. Biomass Bioenerg. 48, 250–256 (2013)

    Article  CAS  Google Scholar 

  27. Szymanski, G.S., Karpinski, Z., Biniak, S., Swiatkowski, A.: The effect of the gradual thermal decomposition of surface oxygen species on the chemical and catalytic properties of oxidized activated carbon. Carbon. 40, 2627–2639 (2002)

    Article  CAS  Google Scholar 

  28. Wang, W.X., Quan, H.Y., Gao, W.M., Zou, R., Chen, D.Z., Dong, Y.H., Guo, L.: N-doped hierarchical porous carbon from waste boat-fruited sterculia seed for high performance supercapacitors. RSC Adv. 7, 16678–16687 (2017)

    Article  CAS  Google Scholar 

  29. Zhang, C.M., Song, W., Ma, Q.L., Xie, L.J., Zhang, X.C., Guo, H.: Enhancement of CO2 capture on biomass-based carbon from black Locust by KOH activation and ammonia modification. Energy Fuels. 30(5), 4181–4190 (2016)

    Article  CAS  Google Scholar 

  30. Choma, J., Osuchowski, L., Marszewski, M., Dziura, A., Jaroniec, M.: Developing microporosity in kevlar(R)-derived carbon fibers by CO2 activation for CO2 adsorption. J. CO2 Util. 16, 17–22 (2016)

  31. Lee, S.Y., Park, S.J.: Determination of the optimal pore size for improved CO2 adsorption in activated carbon fibers. J. Colloid Interf Sci. 389, 230–235 (2013)

    Article  CAS  Google Scholar 

  32. Wu, F.C., Tseng, R.L.: Preparation of highly porous carbon from fir wood by KOH etching and CO2 gasification for adsorption of dyes and phenols from water. J. Colloid Interf Sci. 294, 21–30 (2006)

    Article  CAS  Google Scholar 

  33. Mai, N.T., Nguyen, M.N., Tsubota, T., Nguyen, P.L.T., Nguyen, N.H.: Evolution of physico-chemical properties of dicranopteris linearis-derived activated carbon under various physical activation atmospheres. Sci. Rep-uk. 11,14430. (2021)

  34. Cychosz, K.A., Thommes, M.: Progress in the physisorption characterization of nanoporous gas storage materials. Engineering-Prc. 4, 559–566 (2018)

    CAS  Google Scholar 

  35. Jiang, L.J., Liu, Q.C., Zhao, Q., Ren, S., Kong, M., Yao, L., Meng, F.: Promotional effect of ce on the SCR of NO with NH3 at low temperature over MnOx supported by nitric acid-modified activated carbon. Res. Chem. Intermediat. 44, 1729–1744 (2018)

    Article  CAS  Google Scholar 

  36. Bashkova, S., Bandosz, T.J.: The effects of urea modification and heat treatment on the process of NO2 removal by wood-based activated carbon. J. Colloid Interf Sci. 333, 97–103 (2009)

    Article  CAS  Google Scholar 

  37. Salker, A.V., Desai, M.S.: F. CO-NO/O2 redox reactions over Cu substituted cobalt oxide spinels. Catal. Commun. 87, 116–119 (2016)

    Article  CAS  Google Scholar 

  38. Wang, Z.M., Kanoh, H., Kaneko, K., Lu, G.Q., Do, D.: Structural and surface property changes of macadamia nut-shell char upon activation and high temperature treatment. Carbon. 40, 1231–1239 (2002)

    Article  CAS  Google Scholar 

  39. Ren, S., Guo, F.Q., Yang, J., Yao, L., Zhao, Q., Kong, M.: Selection of carbon materials and modification methods in low-temperature sintering flue gas denitrification. Chem. Eng. Res. Des. 126, 278–285 (2017)

    Article  CAS  Google Scholar 

  40. Ren, S., Guo, F.Q., Zhao, Q., Yang, J., Yao, L., Kong, M.: Sintering flue gas desulfurization with different carbon materials modified by microwave irradiation. J. Iron Steel Res. Int. 24, 979–984 (2017)

    Article  Google Scholar 

  41. Dogan, M., Sabaz, P., Bicil, Z., Kizilduman, B.K., Turhan, Y.: Activated carbon synthesis from tangerine peel and its use in hydrogen storage. J. Energy Inst. 93(6), 2176–2185 (2020)

    Article  CAS  Google Scholar 

  42. Yi, H., Nakabayashi, K., Yoon, S.H., Miyawaki, J.: Study on the applicability of pressurized physically activated carbon as an adsorbent in adsorption heat pumps. RSC Adv. 12, 2558–2563 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sultan, M., Miyazaki, T., Koyama, S.: Optimization of adsorption isotherm types for desiccant air-conditioning applications. Renew. Energ. 121, 441–450 (2018)

    Article  CAS  Google Scholar 

  44. Li, S.X., Chen, C.Z., Li, M.F., Xiao, X.: Torrefaction of corncob to produce charcoal under nitrogen and carbon dioxide atmospheres. Bioresource Technol. 249, 348–353 (2018)

    Article  CAS  Google Scholar 

  45. Qu, Z.B., Sun, F., Liu, X., Gao, J.H., Qie, Z.P., Zhao, G.B.: The effect of nitrogen-containing functional groups on SO2 adsorption on carbon surface: Enhanced physical adsorption interactions. Surf. Sci. 677, 78–82 (2018)

    Article  CAS  Google Scholar 

  46. Khuong, D.A., Nguyen, H.N., Tsubota, T.: Activated carbon produced from bamboo and solid residue by CO2 activation utilized as CO2 adsorbents. Biomass Bioenerg. 148, 106039 (2021)

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 52264043) and the Open Foundation of Key Laboratory of Iron and Steel Metallurgy and Resource Utilization of the Ministry of Education (No. FMRULAB-20-4).

Author information

Authors and Affiliations

Authors

Contributions

B.F.: Methodology, Investigation, Validation, Writing-review & editing. W.L.: Investigation, Writing-original draft. Z.S.: Methodology. L.Y.: Methodology. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Bangfu Huang.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, B., Li, W., Shi, Z. et al. Effect of KOH-N2/CO/air activation on the performance of coconut shell activated carbon for low temperature NH3 removal NO. Adsorption (2024). https://doi.org/10.1007/s10450-024-00483-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10450-024-00483-6

Keywords

Navigation