Skip to main content
Log in

Formulation and characterization of lignin modified chitosan beads

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

A simple manual flow injection method was used to formulate chitosan-lignin composite beads in a ratio of 1:1. The beads were then characterized using FT-IR (Fourier Transform Infrared Spectroscopy), SEM (Scanning Electron Microscopy), TGA (Thermogravimetric Analysis), and XRD (X-ray Diffraction). The FT-IR results indicate the chemical composition, revealing the presence of C-O, NH, C-H, and OH on chitosan, as well as OH, C-O-C, C = C, -O-CH3, and C-H, showing the presence and dispersion of lignin within chitosan molecules. SEM was useful for looking at the surface shape and showed structural differences between pure chitosan (which had a smooth surface with few holes) and composite beads (which had sharp edges and a rough, wrinkled shape). The TGA sheds light on the thermal stability and degradation properties of the beads. The thermograms show a similar pattern; however, the degradation temperature improved with the addition of lignin. An XRD investigation revealed the crystalline nature of the beads. Chitosan beads showed a sharp peak at 2θ = 21.8°, whereas in composites, the first peak was observed at 2θ = 9.9° second at 2θ = 20.130° and the third at 2θ = 28°. These findings allowed for the possibility that chitosan/lignin composite beads may be a good adsorbent for use in wastewater treatment systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Katheresan, V., Kansedo, J., Lau, S.Y.: Efficiency of various recent wastewater dye removal methods: A review. J. Environ. Chem. Eng. 6(4), 4676–4697 (2018). https://doi.org/10.1016/j.jece.2018.06.060

    Article  CAS  Google Scholar 

  2. Albadarin, A.B., Collins, M.N., Naushad, M., Shirazian, S., Walker, G., Mangwandi, C.: Activated lignin-chitosan extruded blends for efficient adsorption of methylene blue. Chem. Eng. J. 307, 264–272 (2017). https://doi.org/10.1016/j.cej.2016.08.089

    Article  CAS  Google Scholar 

  3. Ouslimani, N., Boureghda, M.Z.M.: Removal of directs dyes from wastewater by cotton fiber waste. Int. J. Waste Resour. 8(330) (2018). https://doi.org/10.4172/2252-5211.1000330

  4. Tian, R., Liu, Q., Zhang, W., Zhang, Y.: Preparation of lignin-based hydrogel and its adsorption on Cu 2 + ions and Co 2 + ions in wastewaters. J. Inorg. Organomet. Polym Mater. 28, 2545–2553 (2018). https://doi.org/10.1007/s10904-018-0943-3

    Article  CAS  Google Scholar 

  5. Nair, V., Panigrahy, A., Vinu, R.: Development of novel chitosan–lignin composites for adsorption of dyes and metal ions from wastewater. Chem. Eng. J. 254, 491–502 (2014). https://doi.org/10.1016/j.cej.2014.05.045

    Article  CAS  Google Scholar 

  6. Igberase, E., Osifo, P.: Equilibrium, kinetic, thermodynamic and desorption studies of cadmium and lead by polyaniline grafted cross-linked chitosan beads from aqueous solution. J. Ind. Eng. Chem. 26, 340–347 (2015). https://doi.org/10.1016/j.jiec.2014.12.007

    Article  CAS  Google Scholar 

  7. Francis, A.O., Zaini, M.A.A., Muhammad, I.M., Abdulsalam, S., El-Nafaty, U.A.: Physicochemical modification of chitosan adsorbent: A perspective. Biomass Convers. Biorefinery. 13(7), 5557–5575 (2023). https://doi.org/10.1007/s13399-021-01599-3

    Article  CAS  Google Scholar 

  8. Alves, D.C.D.S., Healy, B., Yu, T., Breslin, C.B.: Graphene-based materials immobilized within chitosan: Applications as adsorbents for the removal of aquatic pollutants. Materials. 14(13), 3655 (2021). https://doi.org/10.3390/ma14133655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hu, X.J., Wang, J.S., Liu, Y.G., Li, X., Zeng, G.M., Bao, Z.L., Zeng, X.X., Chen, A.W., Long, F.: Adsorption of chromium (VI) by ethylenediamine-modified cross-linked magnetic chitosan resin: Isotherms, kinetics and thermodynamics. J. Hazard. Mater. 185(1), 306–314 (2011). https://doi.org/10.1016/j.jhazmat.2010.09.034

    Article  CAS  PubMed  Google Scholar 

  10. Ngah, W.W., Teong, L.C., Hanafiah, M.M.: Adsorption of dyes and heavy metal ions by chitosan composites: A review. Carbohydr. Polym. 83(4), 1446–1456 (2011). https://doi.org/10.1016/j.carbpol.2010.11.004

    Article  CAS  Google Scholar 

  11. González-López, M.E., Pérez-Fonseca, A.A., Arellano, M., Gómez, C., Robledo-Ortíz, J.R.: Fixed-bed adsorption of cr (VI) onto chitosan supported on highly porous composites. Environ. Technol. Innov. 19, p100824 (2020). https://doi.org/10.1016/j.eti.2020.100824 (2020)

    Article  Google Scholar 

  12. Zarrintaj, P., Saeb, M.R., Jafari, S.H., Mozafari, M.: Application of compatibilized polymer blends in biomedical fields. In Compatibilization of polymer blends, pp. 511–537 (2020). (2020). https://doi.org/10.1016/B978-0-12-816006-0.00018-9

  13. Seidi, F., Yazdi, M.K., Jouyandeh, M., Dominic, M., Naeim, H., Nezhad, M.N., Bagheri, B., Habibzadeh, S., Zarrintaj, P., Saeb, M.R., Mozafari, M.: Chitosan-based blends for biomedical applications. Int. J. Biol. Macromol. 183, 1818–1850 (2021). https://doi.org/10.1016/j.ijbiomac.2021.05.003

    Article  CAS  PubMed  Google Scholar 

  14. Chen, L., Tang, C.Y., Ning, N.Y., Wang, C.Y., Fu, Q., Zhang, Q.: Preparation and properties of chitosan/lignin composite films. Chin. J. Polym. Sci. 27(05), 739–746 (2009)

    Article  CAS  Google Scholar 

  15. Melro, E., Alves, L., Antunes, F.E., Medronho, B.: A brief overview on lignin dissolution. J. Mol. Liq. 265, 578–584 (2018). https://doi.org/10.1016/j.molliq.2018.06.021

    Article  CAS  Google Scholar 

  16. Sohni, S., Hashim, R., Nidaullah, H., Lamaming, J., Sulaiman, O.: Chitosan/nano-lignin based composite as a new sorbent for enhanced removal of dye pollution from aqueous solutions. Int. J. Biol. Macromol. 132, 1304–1317 (2019). https://doi.org/10.1016/j.ijbiomac.2019.03.151

    Article  CAS  PubMed  Google Scholar 

  17. Han, X., Li, R., Miao, P., Gao, J., Hu, G., Zhao, Y., Chen, T.: Design, synthesis and adsorption evaluation of bio-based lignin/chitosan beads for Congo red removal. Materials. 15(6), 2310 (2022). https://doi.org/10.3390/ma15062310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dutta, J., Ashraf, A., Mehmi, S., Kumar, A., Alodhayb, A., Kyzas, G.Z.: Synthesis and characterization of peanut hull modified chitosan beads. Environ. Sci. Pollut. Res. 30(39), 90721–90729 (2023). https://doi.org/10.1007/s11356-023-28787-0

    Article  CAS  Google Scholar 

  19. Vakili, M., Deng, S., Cagnetta, G., Wang, W., Meng, P., Liu, D., Yu, G.: Regeneration of Chitosan-based adsorbents used in heavy metal adsorption: A review. Sep. Purif. Technol. 224, 373–387 (2019). https://doi.org/10.1016/j.seppur.2019.05.040

    Article  CAS  Google Scholar 

  20. Journal of Wood Chemistry and Technology, 30(4), 348–359 (2010). https://doi.org/10.1080/02773811003746709

  21. Rosova, E., Smirnova, N., Dresvyanina, E., Smirnova, V., Vlasova, E., Ivan’kova, E., Sokolova, M., Maslennikova, T., Malafeev, K., Kolbe, K., Kanerva, M.: Biocomposite materials based on chitosan and lignin: Preparation and characterization. Cosmetics. 8(1), 24 (2021). https://doi.org/10.3390/cosmetics8010024

    Article  CAS  Google Scholar 

  22. Rai, S., Dutta, P.K., Mehrotra, G.K.: Lignin incorporated antimicrobial chitosan film for food packaging application. J. Polym. Mater. 34(1), 171 (2017)

    CAS  Google Scholar 

  23. Vedula, S.S., Yadav, G.D.: Wastewater treatment containing methylene blue dye as pollutant using adsorption by chitosan lignin membrane: Development of membrane, characterization and kinetics of adsorption. Journal of the Indian Chemical Society, 99(1), p.100263 (2022). (2022). https://doi.org/10.1016/j.jics.2021.100263

  24. Zhu, Y., Qi, B.K., Lv, H.N., Gao, Y., Zha, S.H., An, R.Y., Zhao, Q.S., Zhao, B.: Preparation of DES lignin-chitosan aerogel and its adsorption performance for dyes, catechin and epicatechin. International Journal of Biological Macromolecules, 247, p.125761 (2023). (2023). https://doi.org/10.1016/j.ijbiomac.2023.125761

  25. Zhang, D., Wang, L., Zeng, H., Rhimi, B., Wang, C.: Novel polyethyleneimine functionalized chitosan–lignin composite sponge with nanowall-network structures for fast and efficient removal of hg (ii) ions from aqueous solution. Environ. Science: Nano. 7(3), 793–802 (2020). https://doi.org/10.1039/C9EN01368G

    Article  CAS  Google Scholar 

  26. Pham, C.D., Truong, T.M., Ly, T.B., Le, P.K.: Application of lignin from cellulose isolation process in the fabrication of Chitosan/Lignin Film for UV-Light blocking and anti-oxidation. Waste Biomass Valoriz. 1–14 (2023). https://doi.org/10.1007/s12649-023-02353-8

  27. Kumirska, J., Czerwicka, M., Kaczyński, Z., Bychowska, A., Brzozowski, K., Thöming, J., Stepnowski, P.: Application of spectroscopic methods for structural analysis of chitin and chitosan. Mar. Drugs. 8(5), 1567–1636 (2010). https://doi.org/10.3390/md8051567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zheng, Q., Zhang, D., Fu, P., Wang, A., Sun, Y., Li, Z., Fan, Q.: Insight into the fast pyrolysis of lignin: Unraveling the role of volatile evolving and char structural evolution. Chem. Eng. J. 437, 135316 (2022). https://doi.org/10.1016/j.cej.2022.135316

    Article  CAS  Google Scholar 

  29. Nagireddi, S., Katiyar, V., Uppaluri, R.: Pd (II) adsorption characteristics of glutaraldehyde cross-linked chitosan copolymer resin. Int. J. Biol. Macromol. 94, 72–84 (2017). https://doi.org/10.1016/j.ijbiomac.2016.09.088

    Article  CAS  PubMed  Google Scholar 

  30. Hussain, S., Kamran, M., Khan, S.A., Shaheen, K., Shah, Z., Suo, H., Khan, Q., Shah, A.B., Rehman, W.U., Al-Ghamdi, Y.O., Ghani, U.: Adsorption, kinetics and thermodynamics studies of methyl orange dye sequestration through chitosan composites films. Int. J. Biol. Macromol. 168, 383–394 (2021). https://doi.org/10.1016/j.ijbiomac.2020.12.054

    Article  CAS  PubMed  Google Scholar 

  31. Chen, T., Liu, H., Gao, J., Hu, G., Zhao, Y., Tang, X., Han, X.: Efficient removal of methylene blue by bio-based sodium alginate/lignin composite hydrogel beads. Polymers. 14(14), 2917 (2022). https://doi.org/10.3390/polym14142917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Larosa, C., Salerno, M., de Lima, J.S., Meri, R.M., da Silva, M.F., de Carvalho, L.B., Converti, A.: Characterisation of bare and tannase-loaded calcium alginate beads by microscopic, thermogravimetric, FTIR and XRD analyses. Int. J. Biol. Macromol. 115, 900–906 (2018). https://doi.org/10.1016/j.ijbiomac.2018.04.138

    Article  CAS  PubMed  Google Scholar 

  33. Pu, S., Ma, H., Deng, D., Xue, S., Zhu, R., Zhou, Y., Xiong, X.: Isolation, identification, and characterization of an aspergillus Niger bioflocculant-producing strain using potato starch wastewater as nutrilite and its application. PloS One. 13(1), e0190236 (2018). https://doi.org/10.1371/journal.pone.0190236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Padmavathy, K.S., Madhu, G., Haseena, P.V.: A study on effects of pH, adsorbent dosage, time, initial concentration and adsorption isotherm study for the removal of hexavalent chromium (Cr (VI)) from wastewater by magnetite nanoparticles. Procedia Technology, 24, pp.585–594 (2016). (2016). https://doi.org/10.1016/j.protcy.2016.05.127

  35. Masilompane, T.M., Chaukura, N., Mishra, S.B., Mishra, A.K.: Chitosan-lignin-titania nanocomposites for the removal of brilliant black dye from aqueous solution. Int. J. Biol. Macromol. 120, 1659–1666 (2018). https://doi.org/10.1016/j.ijbiomac.2018.09.129

    Article  CAS  PubMed  Google Scholar 

  36. Ravishankar, K., Venkatesan, M., Desingh, R.P., Mahalingam, A., Sadhasivam, B., Subramaniyam, R., Dhamodharan, R.: Biocompatible hydrogels of chitosan-alkali lignin for potential wound healing applications. Mater. Sci. Engineering: C. 102, 447–457 (2019). https://doi.org/10.1016/j.msec.2019.04.038

    Article  CAS  Google Scholar 

  37. Fan, C., Li, K., Wang, Y., Qian, X., Jia, J.: The stability of magnetic chitosan beads in the adsorption of Cu 2+. RSC advances, 6(4), pp.2678–2686 (2016). (2016). https://doi.org/10.1039/C5RA20943A

  38. Cestari, A.R., Vieira, E.F., Dos Santos, A.G., Mota, J.A., De Almeida, V.P.: Adsorption of anionic dyes on chitosan beads. 1. The influence of the chemical structures of dyes and temperature on the adsorption kinetics. J. Colloid Interface Sci. 280(2), 380–386 (2004). https://doi.org/10.1016/j.jcis.2004.08.007

    Article  CAS  PubMed  Google Scholar 

  39. Pal, P., Pal, A.: Surfactant-modified chitosan beads for cadmium ion adsorption. International journal of biological macromolecules, 104, pp.1548–1555 (2017). (2017). https://doi.org/10.1016/j.ijbiomac.2017.02.042

  40. Chatterjee, S., Lee, M.W., Woo, S.H.: Influence of impregnation of chitosan beads with cetyl trimethyl ammonium bromide on their structure and adsorption of Congo red from aqueous solutions. Chem. Eng. J. 155(1–2), 254–259 (2009). https://doi.org/10.1016/j.cej.2009.07.051

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of School of Bioengineering and Biosciences, Lovely Professional University.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. The authors indicated in parentheses made substantial contributions to the following tasks of research: conceptualization (Joydeep Dutta, Taiba Binte Bashir, George Z Kyzas), writing — original draft, writing — revised, investigation, methodology (Joydeep Dutta, Taiba Binte Bashir), supervision (Joydeep Dutta), Review and Analysis (George Z Kyzas). All authors read and approved the final manuscript.

Corresponding author

Correspondence to Joydeep Dutta.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publication

We undertake and agree that the manuscript submitted to your journal has not been published elsewhere and has not been simultaneously submitted to other journals.

Competing interest

Joydeep Dutta reports a relationship with Lovely Professional University Department of Bioengineering and Biosciences that includes: employment. If there are other authors, they declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bashir, T., Dutta, J., Masarat, S. et al. Formulation and characterization of lignin modified chitosan beads. Adsorption (2024). https://doi.org/10.1007/s10450-024-00478-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10450-024-00478-3

Keywords

Navigation