Skip to main content

Advertisement

Log in

Physicochemical modification of chitosan adsorbent: a perspective

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Chitosan is a low-cost natural adsorbent. Its derivatives from chemical and physical modification processes possess superior properties for wide applications to meet the growing demands. The chemical modification includes replacement reactions, chain elongation and depolymerization, while the physical modification is to obtain polymeric forms such as powders, nanoparticles and gels. This paper is aimed to highlight the present trends in chitosan preparation and modification, the enhancement in adsorptive properties and the remarks into future directions. The mechanisms involved in adsorption by chitosan derivatives and how the spent adsorbent can be regenerated were also discussed. Meanwhile, for the adsorption of heavy metals from wastewater, chitosan modified with activated carbon showed a better adsorption capacity of 90.90 mg g−1 for Cr(VI) and 50.50 mg g−1 for Cd(II), and for dye adsorption, chitosan modified with activated neem leave showed better adsorption capacity of 90.8 mg g−1 for methylene blue, and for phenol removal, chitosan modified with salicylaldehyde and β-cyclodextrin polymer showed better adsorption capacity of 179.73 mg g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Pereda M, Amica G, Marcovich NE (2012) Development and characterization of edible chitosan/olive oil emulsion films. Carbohyd Polym 87(2):1318–1325

    Article  Google Scholar 

  2. Ramasamy P, Shangmugam A (2015) Characterization and wound healing property of collagen-chitosan film from sepia kobiensis. Int J Biol Macromol 74:93–102

    Article  Google Scholar 

  3. Hamed I, Özogul F, Regenstein JM (2016) Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): a review. Trends Food Sci Technol 48:40–50

    Article  Google Scholar 

  4. Kaya M, Baran T, Asan-Ozusaglam M, Cakmak Y, Tozak K, Mol A et al (2015) Extraction and characterization of chitin and chitosan with antimicrobial and antioxidant activities from cosmopolitan Orthoptera species (Insecta). Biotechnol Bioprocess Eng 20(1):168–179

    Article  Google Scholar 

  5. Torii Y, Ikeda H, Shimojoh M, Kurita K (2009) Chemoselective protection of chitosan by dichlorophthaloylation: preparation of a key intermediate for chemical modifications. Polym Bull 62(6):749–759

    Article  Google Scholar 

  6. Marei NH, Abd El-Samie E, Salah T, Saad GR, Elwahy AH (2016) Isolation and characterization of chitosan from different local insects in Egypt. Int J Biol Macromol 82:871–877

    Article  Google Scholar 

  7. Rodríguez-Núñez JR, López-Cervantes J, Sánchez-Machado DI, Ramírez-Wong B, Torres-Chavez P, Cortez-Rocha MO (2012) Antimicrobial activity of chitosan-based films against Salmonella typhimurium and Staphylococcus aureus. Int J Food Sci Technol 47(10):2127–2133

    Article  Google Scholar 

  8. Davis TA, Volesky B, Mucci A (2003) A review of the biochemistry of heavy metal biosorption by brown algae. Water Res J 37:4311–4330

    Article  Google Scholar 

  9. Kumar MNR (2000) A review of chitin and chitosan applications. React Funct Polym 46(1):1–27

    Article  Google Scholar 

  10. Kurita K, Yoshida Y, Umemura T (2010) Finely selective protections and deprotections of multifunctional chitin and chitosan to synthesize key intermediates for regioselective chemical modifications. Carbohyd Polym 81(2):434–440

    Article  Google Scholar 

  11. Muñoz I, Rodríguez C, Gillet D, Moerschbacher BM (2018) Life cycle assessment of chitosan production in India and Europe. Int J Life Cycle Assess 23:1151–1160

    Article  Google Scholar 

  12. Santos VP, Marques NS, Maia PC, Lima MABD, Franco LDO, Campos-Takaki GMD (2020) Seafood waste as attractive source of chitin and chitosan production and their applications. Int J Mol Sci 21(12):4290

    Article  Google Scholar 

  13. Alves NM, Mano JF (2008) Chitosan derivatives obtained by chemical modifications for biomedical and environmental applications. Int J Biol Macromol 43:401–414

    Article  Google Scholar 

  14. Okolo PO, Akakuru OU, Osuoji OU, Jideonwo A (2013) Studies on the properties of chitosan-starch beads and their application as drug release materials. Bayero J Pure Appl Sci 6(1):118–126

    Article  Google Scholar 

  15. Arbia W, Arbia L, Adour L, Amrane A (2013) Chitin extraction from crustacean shells using biological methods-a review. Food Technol Biotechnol J 51(1):12–25

    Google Scholar 

  16. Guibal E (2004) Interactions of metal ions with chitosan-based sorbents: a review. Sep Purif Technol 38(1):43–74

    Article  Google Scholar 

  17. Muzzarelli RAA (2011) Potential of chitin/chitosan-bearing terials for uranium recovery: an interdisciplinary review. J Carbohyd Polym 84(1):54–63

    Article  Google Scholar 

  18. Patil RS, Ghormade V, Deshpande MV (2000) Chitinolytic enzymes: an exploration. Enzyme Microb Technol J 26(7):473–483

    Article  Google Scholar 

  19. Alaba PA, Oladoja NA, Sani YM, Ayodele OB, Mohammed IY, Olupinla SF, Daud WMW (2018) Insight into wastewater decontamination using polymeric adsorbents. J Environ Chem Eng 6:1651–1672

    Article  Google Scholar 

  20. Crini G, Badot PM (2008) Application of chitosan, a natural amino polysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature. Prog Polym Sci J 33(4):399–447

    Article  Google Scholar 

  21. El-hefian EA, Nasef MM, Yahaya AH (2011) Chitosan physical forms: a short review. Aust J Basic Appl Sci 5(5):670–677

    Google Scholar 

  22. Brasselet C, Pierre G, Dubessay P, Dols-Lafargue M, Coulon J, Maupeu J, ...., & Delattre C (2019) Modification of chitosan for the generation of functional derivatives. Appl Sci 9(7):1321

  23. Sorlier P, Denuzière A, Viton C, Domard A (2001) Relation between the degree of acetylation and the electrostatic properties of chitin and chitosan. Biomacromol J 2:765–772

    Article  Google Scholar 

  24. Bhatt LR, Kim BM, Hyun K, Kwak GB, Lee CH et al (2011) Preparation and characterization of chitin benzoic acid esters. Molecules 16:3029–3036

    Article  Google Scholar 

  25. Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31(7):603–632

    Article  Google Scholar 

  26. Jang M, Kong B, Jeong Y, Hyung Lee C, Nah J (2004) Physicochemical characterization of a-chitin, ß-chitin, and γ-chitin separated from natural resources. J Polym Sci A Polym Chem 42:3423–3432

    Article  Google Scholar 

  27. Madera-Santana TJ, Herrera-Méndez CH, Rodríguez-Núñez JR (2018) An overview of the chemical modifications of chitosan and their advantages. Green Materials 6(4):131–142

    Article  Google Scholar 

  28. Lee ST, Mi FL, Shen YJ, Shyu SS (2001) Equilibrium and kinetic studies of copper (II) ion uptake by chitosan-tripolyphosphate chelating resin. J Polym 42(5):1879–1892

    Article  Google Scholar 

  29. Mohammad HM (2016) Preparation and charactetrization of cross-linked chitosan beads for phosphate adsorption in aqueous solution. Master of Science thesis submitted to the department of chemistry, University of Saskatchewan, Saskatoon, SK (S7N 5C9), Canada

  30. Patrulae V, Anamaria N, Manuela MM, Laura DP, Otilia BS, Vasile O (2013) Optimization of the removal of copper (II) ions from aqueous solution on chitosan and cross-linked chitosan beads. J Bioresour 8(1):1147–1165

    Google Scholar 

  31. de Farias BS, Junior TRSAC, de Almeida Pinto LA (2019) Chitosan-functionalized nanofibers: A comprehensive review on challenges and prospects for food applications. Int J Biol Macromol 123:210–220

    Article  Google Scholar 

  32. Mucha M, Miskiewicz D, Pawlak A (2003) Chitosan and its mixtures Properties and applications. Przem Chem 82(8–9):1138–1142

    Google Scholar 

  33. Struszczyk MH (2002) Chitin and chitosan. Part II. Applications of chitosan. Polimery-Warsaw J 47(6):396–403

    Article  Google Scholar 

  34. da Silva Alves DC, Healy B, Pinto LA, Cadaval TR, Breslin CB (2021) Recent developments in chitosan-based adsorbents for the removal of pollutants from aqueous environments. Molecules 26(3):594

    Article  Google Scholar 

  35. Bailey SE, Olin TJ, Bricka M, Adrian DD (1999) A review of potentially low-cost sorbents for heavy metals. Water Resour J 33:2469–2479

    Google Scholar 

  36. Kyzas GZ, Dimitrios NB (2015) Recent modifications of chitosan for adsorption applications: a critical and systematic review. J Marine Drugs 13:312–337

    Article  Google Scholar 

  37. Bhatnagar A, Sillanpää M (2009) Applications of chitin-and chitosan-derivatives for the detoxification of water and wastewater-a short review. Adv Colloid Interface Sci J 152(1):26–38

    Article  Google Scholar 

  38. Liu L, Li Y, Li Y, Fang YE (2004) Rapid N-phthaloylation of chitosan by microwave irradiation. Carbohyd Polym 57(1):97–100

    Article  Google Scholar 

  39. Wang J, Wang L, Yu H, Chen Y, Chen Q, Zhou W, ..., & Chen X (2016) Recent progress on synthesis, property and application of modified chitosan: an overview. Int J Biol Macromol 88:333-344

  40. Kulkarni AD, Patel HM, Surana SJ, Vanjari YH, Belgamwar VS, Pardeshi CV (2017) N, N, N-Trimethyl chitosan: An advanced polymer with myriad of opportunities in nanomedicine. Carbohyd Polym 157:875–902

    Article  Google Scholar 

  41. LogithKumar R, KeshavNarayan A, Dhivya S, Chawla A, Saravanan S, Selvamurugan N (2016) A review of chitosan and its derivatives in bone tissue engineering. Carbohyd Polym 151:172–188

    Article  Google Scholar 

  42. Seedevi P, Moovendhan M, Vairamani S, Shanmugam A (2017) Evaluation of antioxidant activities and chemical analysis of sulfated chitosan from Sepia prashadi. Int J Biol Macromol 99:519–529

    Article  Google Scholar 

  43. Campelo CS, Chevallier P, Vaz JM, Vieira RS, Mantovani D (2017) Sulfonated chitosan and dopamine based coatings for metallic implants in contact with blood. Mater Sci Eng, C 72:682–691

    Article  Google Scholar 

  44. Galhoum AA, Mahfouz MG, Gomaa NM, Vincent T, Guibal E (2017) Chemical modifications of chitosan nano-based magnetic particles for enhanced uranyl sorption. Hydrometallurgy 168:127–134

    Article  Google Scholar 

  45. Vakili M, Rafatullah M, Ibrahim MH, Abdullah AZ, Gholami Z, Salamatinia B (2017) Enhancing reactive blue 4 adsorption through chemical modification of chitosan with hexadecylamine and 3-aminopropyl triethoxysilane. J Water Process Eng 15:49–54

    Article  Google Scholar 

  46. Correa-Murrieta MA, López-Cervantes J, Sánchez-Machado DI, Sánchez-Duarte RG, Rodríguez-Núñez JR, Núñez-Gastélum JA (2012) Fe (II) and Fe (III) adsorption by chitosan-tripolyphosphate beads: kinetic and equilibrium studies. J Water Supply Res Technol Aqua 61(6):331–341

    Article  Google Scholar 

  47. Kousalya GN, Gandhi MR, Meenakshi S (2010) Sorption of chromium (VI) using modified forms of chitosan beads. Int J Biol Macromol 47(2):308–315

    Article  Google Scholar 

  48. Sánchez-Duarte RG, López-Cervantes J, Sánchez-Machado DI, Correa-Murrieta MA, Núñez-Gastélum JA, & Rodríguez-Núñez JR (2016) Chitosan-based adsorbents gels for the removal of tris-azo dye: isotherms and kinetics studies. Environ Eng Manag J 15(11)

  49. Nwagu TN, Okolo B, Aoyagi H, Yoshida S (2017) Chemical modification with phthalic anhydride and chitosan: viable options for the stabilization of raw starch digesting amylase from Aspergillus carbonarius. Int J Biol Macromol 99:641–647

    Article  Google Scholar 

  50. O’Brien AM, Smith AT, Ó’Fágáin C (2003) Effects of phthalic anhydride modification on horseradish peroxidase stability and activity. Biotechnol Bioeng 81(2):233–240

    Article  Google Scholar 

  51. Pokhrel S, Paras NY, Rameshwar A (2015) Applications of chitin and chitosan in industry and medical science: a review. Nepal J Sci Technol 16(1):99–104

    Article  Google Scholar 

  52. Vakili M, Shubo D, Giovanni C, Wei W, Pingping M, Dengchao L, Gang Y (2019) Regeneration of chitosan-based adsorbents used in heavy metal adsorption: a review. J Sep Purif Technol 224:373–387

    Article  Google Scholar 

  53. Zahrim AY, Asis T, Hashim MA, Al-Mizi TMTMA, & Ravindra P (2015) A review on the empty fruit bunch composting: life cycle analysis and the effect of amendment(s). Advances in bioprocess technology (pp. 1–13)

  54. Beach ES, Eckelman MJ, Cui Z, Brentner L, Zimmerman JB (2012) Preferential technological and life cycle environmental performance of chitosan flocculation for harvesting of the green algae Neochloris oleoabundans. Biores Technol 121:445–449

    Article  Google Scholar 

  55. Anand M, Kalaivani R, Maruthupandy M, Kumaraguru AK, Suresh S (2014) Extraction and characterization of chitosan from marine crab and squilla collected from the gulf of Mannar region, South India. J Chitin Chitosan Sci 2:1–8

    Article  Google Scholar 

  56. Rajasree R, Rahate KP (2013) An overview on various modifications of chitosan and its applications. Int J Pharm Sci Res 4(11):4157–4193

    Google Scholar 

  57. Crini G (2005) Recent developments in polysaccharide-base materials used as adsorbents in wastewater treatment. Prog Polym Sci J 30(1):38–70

    Article  Google Scholar 

  58. Rasweefali MK, Sabu S, Sunooj KV, Sasidharan A, Xavier KM (2021) Consequences of chemical deacetylation on physicochemical, structural and functional characteristics of chitosan extracted from deep-sea mud shrimp. Carbohyd Polym Technol Appl 2:100032

    Google Scholar 

  59. Hao G, Hu Y, Shi L, Chen J, Cui A, Weng W, Osako K (2021) Physicochemical characteristics of chitosan from swimming crab (Portunus trituberculatus) shells prepared by subcritical water pretreatment. Sci Rep 11(1):1–9

    Article  Google Scholar 

  60. Ishtiyak Q, Chhipa RC (2017) Synthesis, characterization and evaluation of adsorption properties of activated carbon obtained from neem leaves (azadirachta indica). Orient J Chem 33(4):2095–2102

    Article  Google Scholar 

  61. Pandey VP, Rani J, Jaiswal N, Singh S, Awasthi M, Shasany AK et al (2017) Chitosan immobilized novel peroxidase from Azadirachta indica: characterization and application. Int J Biol Macromol 104:1713–1720

    Article  Google Scholar 

  62. Asokogene OF, Zaini MAA, Idris MM, Abdulsalam S, Usman AEN (2019) Physicochemical properties of oxalic acid-modified chitosan/neem leave composites from Pessu river crab shell. Int J Chem Reactor Eng 17(9):1–12

    Article  Google Scholar 

  63. Suneeta K, Kumar SH, Sahoo A, Pradip Kumar R (2017) Physicochemical properties and characterization of chitosan synthesized from fish, crab and shrimp shells. Int J Biol Macromol 104:1697–1705

    Article  Google Scholar 

  64. Mohanasrinivasan V, Mishra M, Paliwal J, Singh S, Selvarajan E, Suganthi V et al (2014) Studies on heavy metal removal efficiency and antibacterial activity of chitosan prepared from shrimp shell waste. J Biotechnol 4(2):167–175

    Google Scholar 

  65. Tarafdar A, Biswas G (2013) Extraction of chitosan from prawn shell wastes and examination of its viable commercial applications. Int J Theor Appl Res Mech Eng 2:17–24

    Google Scholar 

  66. Puvvada YS, Vankayalapati S, Sukhavasi S (2012) Extraction of chitin from chitosan from exoskeleton of shrimp for application in the pharmaceutical industry. Int Curr Pharm J 1(9):258–263

    Article  Google Scholar 

  67. Sakthivel D, Vijayakumar N, Anandan V (2015) Extraction of chitin and chitosan from Mangrove crab (Sesarmaplicatum) from Thengaithittu estuary Pondicherry Southeast coast of India. Int J Pharm Pharm Res 4(1):12–24

    Google Scholar 

  68. Satpathy AA, Dash S, Das SK, Shyamasuta S, Pradhan S (2021) Functional and bioactive properties of chitosan from Indian major carp scale. Aquacult Int 29(2):417–430

    Article  Google Scholar 

  69. Abdullin VF, Shipovskaya AB, Fomina VI, Artemenko SE, Ovchinnikova GP, Pchelintseva EV (2008) Physicochemical properties of chitosan from different raw material sources. J Fibre Chem 40(1):40–44

    Article  Google Scholar 

  70. Kumaresapillai N, Basha RA, Sathish R (2011) Production and evaluation of chitosan from Aspergillus niger MTCC strains. Iran J Pharm Res 10(3):553–558

    Google Scholar 

  71. Kaur K, Dattajirao V, Shrivastava V, & Bhardwaj U (2012) Isolation and characterization of chitosan-producing bacteria from beaches of Chennai, India. Enzyme Res 1–6

  72. da Silva Lucas AJ, Oreste EQ, Costa HLG, López HM, Saad CDM, Prentice C (2021) Extraction, physicochemical characterization, and morphological properties of chitin and chitosan from cuticles of edible insects. Food Chem 343:128550

    Article  Google Scholar 

  73. Aridi AS, Yusof YA, Chin NL, Ishak NA, Yusof NA, & Manaf YN (2021) Physicochemical properties of chitosan extracted from Leucaena leucocephala pods using deprotenization and decolorization steps. In IOP Conference Series: Earth and Environmental Science (Vol. 709, No. 1, p. 012038). IOP Publishing

  74. Mustafa A, Cadar E, Sirbu R (2015) Pharmaceutical uses of chitosan in the medical field. Eur J Interdiscip Stud 1(3):35–40

    Article  Google Scholar 

  75. Akakuru OU, Louis H, Amos PI, Akakuru OC, Nosike EI (2018) The chemistry of chitin and chitosan justifying their nanomedical utilities. Biochem Pharmacol (Los Angel) 7(241):2167–2501

    Google Scholar 

  76. Ruiz GAM, & Corrales HFZ (2017) Chitosan, chitosan derivatives and their biomedical applications. Biological Activities and Application of Marine Polysaccharides 87

  77. Morin-Crini N, Lichtfouse E, Torri G, & Crini G (2019) Fundamentals and applications of chitosan. In Sustainable Agriculture Reviews 35 (pp. 49–123). Cham: Springer

  78. Harish PKV, Tharanathan RN (2007) Chitin/chitosan: modifications and their unlimited applications potential–an overview. Trends Food Sci Technol 18:117–131

    Article  Google Scholar 

  79. Repo E, Warchol JK, Kurniawan TA, Sillanpää ME (2010) Adsorption of Co (II) and Ni (II) by EDTA-and/or DTPA-modified chitosan: kinetic and equilibrium modeling. Chem Eng J 161(1–2):73–82

    Article  Google Scholar 

  80. Nagib S, Inoue K, Yamaguchi T, Tamaru T (1999) Recovery of Ni from a large excess of Al generated from spent hydrodesulfurization catalyst using picolylamine type chelating resin and complexane types of chemically modified chitosan. Hydrometallurgy 51(1):73–85

    Article  Google Scholar 

  81. Hariani PL, Fatma F, Riyanti F, Ratnasari H (2015) Adsorption of phenol pollutants from aqueous solution using Ca-Bentonite/chitosan composite. J Manusia dan Lingkungan 22(2):233–239

    Article  Google Scholar 

  82. Moosa AA, Ridha AM, Kadhim NA (2016) Use of biocomposite adsorbents for the removal of methylene blue dye from aqueous solution. Am J Mater Sci 6(5):135–146

    Google Scholar 

  83. Saifuddin MN, Kumaran P (2005) Removal of heavy metal from industrial wastewater using chitosan coated oil palm shell charcoal. Electron J Biotechnol 8(1):43–53

    Google Scholar 

  84. Okoya AA, Akinyele AB, Ifeanyi E, Amuda OS, Alayande OS, Makinde OW (2014) Adsorption of heavy metal ions onto chitosan grafted cocoa husk char. Afr J Pure Appl Chem 8(10):147–161

    Article  Google Scholar 

  85. Kyzas GZ, Deliyanni EA (2013) Mercury (II) removal with modified magnetic chitosan adsorbents. Molecules 18(6):6193–6214

    Article  Google Scholar 

  86. Vafakish B, Wilson LD (2019) Surface-modified chitosan: an adsorption study of a “Tweezer-like” biopolymer with fluorescein. Surfaces 2(3):468–484

    Article  Google Scholar 

  87. Al-Ghamdi YO, Alamry KA, Hussein MA, Marwani HM, Asiri AM (2019) Sulfone-modified chitosan as selective adsorbent for the extraction of toxic Hg (II) metal ions. Adsorpt Sci Technol 37(1–2):139–159

    Article  Google Scholar 

  88. Hastuti B, Masykur A, Hadi S (2016) Modification of chitosan by swelling and crosslinking using epichlorohydrin as heavy metal Cr (VI) adsorbent in batik industry wastes. Mater Sci Eng 107(012020):1–10

    Google Scholar 

  89. Soni U, Bajpai J, Singh SK, Bajpai AK (2017) Evaluation of chitosan-carbon based biocomposite for efficient removal of phenols from aqueous solutions. J Water Process Eng 16:56–63

    Article  Google Scholar 

  90. Liu Q, Yang B, Zhang L, Huang R (2014) Simultaneous adsorption of phenol and Cu2+ from aqueous solution by activated carbon/chitosan composite. Korean J Chem Eng 31(9):1608–1615

    Article  Google Scholar 

  91. Marrakchi F, Khanday WA, Asif M, Hameed BH (2016) Cross-linked chitosan/sepiolite composite for the adsorption of methylene blue and reactive orange 16. Int J Biol Macromol 93:1231–1239

    Article  Google Scholar 

  92. Regunton PCV, Sumalapao DEP, Villarante NR (2018) Biosorption of methylene blue from aqueous solution by coconut (Cocos nucifera) shell-derived activated carbon-chitosan composite. Orient J Chem 34(1):115

    Article  Google Scholar 

  93. Huang R, Yang B, Liu Q, Liu Y (2014) Multifunctional activated carbon/chitosan composite preparation and its simultaneous adsorption of phenol and Cr (VI) from aqueous solutions. Environ Prog Sustain Energy 33(3):814–823

    Article  Google Scholar 

  94. López-Cervantes J, Sánchez-Machado DI, Sánchez-Duarte RG, Correa-Murrieta MA (2018) Study of a fixed-bed column in the adsorption of an azo dye from an aqueous medium using a chitosan–glutaraldehyde biosorbent. Adsorpt Sci Technol 36(1–2):215–232

    Article  Google Scholar 

  95. Auta M, Hameed BH (2013) Coalesced chitosan activated carbon composite for batch and fixed-bed adsorption of cationic and anionic dyes. Colloids Surf B 105:199–206

    Article  Google Scholar 

  96. Jhaveri J, Raichura Z, Khan T, Momin M, Omri A (2021) Chitosan nanoparticles-insight into properties, functionalization and applications in drug delivery and theranostics. Molecules 26(2):272

    Article  Google Scholar 

  97. Abhinaya M, Parthiban R, Kumar PS, & Vo DVN (2021) A review on cleaner strategies for extraction of chitosan and its application in toxic pollutant removal. Environ Res 110996

  98. Begum S, Yuhana NY, Saleh NM, Kamarudin NN, & Sulong AB (2021) Review of chitosan composite as a heavy metal adsorbent: Material preparation and properties. Carbohyd Polym 117613

  99. Sharififard H, Nabavinia M, Soleimani M (2017) Evaluation of adsorption efficiency of activated carbon/chitosan composite for removal of Cr (VI) and Cd (II) from single and bi-solute dilute solution. Adv Environ Technol 2(4):215–227

    Google Scholar 

  100. Bahador F, Foroutan R, Esmaeili H, Ramavandi B (2021) Enhancement of the chromium removal behavior of Moringa oleifera activated carbon by chitosan and iron oxide nanoparticles from water. Carbohyd Polym 251:117085

    Article  Google Scholar 

  101. Haseena PV, Padmavathy KS, Krishnan PR, Madhu G (2016) Adsorption of ammonium nitrogen from aqueous systems using chitosan-bentonite film composite. Procedia Technol 24:733–740

    Article  Google Scholar 

  102. Soares SF, Amorim CO, Amaral JS, Trindade T, Daniel-da-Silva AL (2021) On the efficient removal, regeneration and reuse of quaternary chitosan magnetite nanosorbents for glyphosate herbicide in water. J Environ Chem Eng 9(3):105189

    Article  Google Scholar 

  103. Cheung WH, Szeto YS, McKay G (2009) Enhancing the adsorption capacities of acid dyes by chitosan nano particles. Biores Technol 100(3):1143–1148

    Article  Google Scholar 

  104. Carvalho VV, Gonçalves JO, Silva A, Cadaval TR Jr, Pinto LA, Lopes TJ (2019) Separation of anthocyanins extracted from red cabbage by adsorption onto chitosan films. Int J Biol Macromol 131:905–911

    Article  Google Scholar 

  105. Pinheiro CP, Moreira LM, Alves SS, Cadaval TR Jr, Pinto LA (2021) Anthocyanins concentration by adsorption onto chitosan and alginate beads: Isotherms, kinetics and thermodynamics parameters. Int J Biol Macromol 166:934–939

    Article  Google Scholar 

  106. Chatterjee S, Woo SH (2009) The removal of nitrate from aqueous solutions by chitosan hydrogel beads. J Hazard Mater 164(2):1012–1018

    Article  Google Scholar 

  107. Jaafari K, Elmaleh S, Coma J, Benkhouja K (2001) Equilibrium and kinetics of nitrate removal by protonated cross-linked chitosan. Water SA J 27(1):9–14

    Google Scholar 

  108. Viswanathan N, Sundaram CS, Meenakshi S (2009) Removal of fluoride from aqueous solution using protonated chitosan beads. J Hazard Mater 161(1):423–430

    Article  Google Scholar 

  109. Affonso LN, Marques Jr JL, Lima VV, Gonçalves JO, Barbosa SC, Primel EG, ..., & Cadaval Jr TR (2020) Removal of fluoride from fertilizer industry effluent using carbon nanotubes stabilized in chitosan sponge. J Hazard Mater 388:122042

  110. Safie NN, Zahrim Yaser A, Hilal N (2020) Ammonium ion removal using activated zeolite and chitosan. Asia-Pac J Chem Eng 15(3):e2448

    Article  Google Scholar 

  111. Zhao Y, Guo L, Shen W, An Q, Xiao Z, Wang H, ..., & Li Z (2020) Function integrated chitosan-based beads with throughout sorption sites and inherent diffusion network for efficient phosphate removal. Carbohyd Polym 230:115639

  112. Jadhav DN, Vanjara AK (2004) Removal of phenol from wastewater using sawdust, polymerized sawdust and sawdust carbon. Indian J Chem Technol 1:35–41

    Google Scholar 

  113. Li JM, Meng XG, Hu CW, Du J (2009) Adsorption of phenol, p-chlorophenol and p-nitrophenol onto functional chitosan. Bioresour Technol J 100(3):1168–1173

    Article  Google Scholar 

  114. Varma AJ, Deshpande SV, Kennedy JF (2004) Metal complexation by chitosan and its derivatives: a review. Carbohyd Polym 55(1):77–93

    Article  Google Scholar 

  115. Agarwal A, Vaishali A (2017) Chitosan based adsorbent: a remedy to handle industrial waste water. Int J Eng Sci 6:34–49

    Google Scholar 

  116. Biswas S, Taslim UR, Tonmoy D, Papia H, Mohammed MR (2020) Application of chitosan-clay biocomposite beads for removal of heavy metal and dye from industrial effluent. J Compos Sci 4(16):1–14

    Google Scholar 

  117. Thakre D, Jagtap S, Sakhare N, Labhsetwar N, Meshram S, Rayalu S (2010) Chitosan based mesoporous Ti–Al binary metal oxide supported beads for defluoridation of water. Chem Eng J 158(2):315–324

    Article  Google Scholar 

  118. Gautam RK, & Chattopadhyaya MC (Eds) (2016) Advanced nanomaterials for wastewater remediation. CRC press

  119. Gupta VK, Nayak A, Agarwal S (2015) Bioadsorbents for remediation of heavy metals: current status and their future prospects. Environ Eng Res 20(1):1–18

    Article  Google Scholar 

  120. Shah IK, Pre P, Alappat BJ (2013) Steam regeneration of adsorbents: an experimental and technical review. Chem Sci Trans 2(4):1078–1088

    Google Scholar 

  121. Shahadat M, Isamil S (2018) Regeneration performance of clay-based adsorbents for the removal of industrial dyes: a review. RSC Adv 8(43):24571–24587

    Article  Google Scholar 

  122. Diab MA, El-Sonbati AZ, Bader DMD (2011) Thermal stability and degradation of chitosan modified by benzophenone. Spectrochim Acta Part A Mol Biomol Spectrosc 79(5):1057–1062

    Article  Google Scholar 

  123. Stoleru E, Hitruc EG, Vasile C, Oprica L (2017) Biodegradation of poly(lactic acid)/chitosan stratified composites in presence of the phanerochaete chrysosporium fungus. Polym Degrad Stab 143:118–129

    Article  Google Scholar 

  124. Kim KJ, Kim DH, Yoo JC, Baek K (2011) Electrokinetic extraction of heavy metals from dredged marine sediment. Sep Purif Technol 79(2):164–169

    Article  Google Scholar 

  125. Ngah WSW, Fatinathan S (2010) Adsorption characterization of Pb(II) and Cu(II) ions onto chitosan-tripolyphosphate beads: kinetic, equilibrium and thermodynamic studies. J Environ Manage 91:958–969

    Article  Google Scholar 

  126. Oviedo C, Rodríguez J (2003) EDTA: the chelating agent under environmental scrutiny. Quim Nova 26(6):901–905

    Article  Google Scholar 

  127. Cui H, Chen J, Yang H, Wang W, Liu Y, Zou D, Liu W, Men G (2013) Preparation and application of Aliquat 336 functionalized chitosan adsorbent for the removal of Pb(II). Chem Eng J 232:372–379

    Article  Google Scholar 

  128. Padilla-Rodríguez A, Perales-Pérez O, Román-Velázquez FR (2014) Removal of As(III) and As(V) Oxyanions from aqueous solutions by using chitosan beads with immobilized iron(III). Int J Hazard Mater 2:7–17

    Google Scholar 

  129. Sankararamakrishnan N, Dixit A, Iyengar L, Sanghi R (2006) Removal of hexavalent chromium using a novel cross linked xanthated chitosan. Biores Technol 97(18):2377–2382

    Article  Google Scholar 

  130. Futalan CM, Tsai WC, Lin SS, Hsien KJ, Dalida ML, Wan MW (2012) Copper, nikel and lead adsorption from aqueous solution using chitosan-immobilized on bentonite in ternary system. Sustain Environ Res 22(6):345–355

    Google Scholar 

  131. Heidari A, Younesi H, Mehraban Z, Heikkinen H (2013) Selective adsorption of Pb(II), Cd(II), and Ni(II) ions from aqueous solution using chitosan–MAA nanoparticles. Int J Biol Macromol 61:251–263

    Article  Google Scholar 

  132. Kausar A, Naeem K, Hussain T, Bhatti HN, Jubeen F, Nazir A, Iqbal M (2019) Preparation and characterization of chitosan/clay composite for direct Rose FRN dye removal from aqueous media: comparison of linear and non-linear regression methods. J Market Res 8(1):1161–1174

    Google Scholar 

  133. Enos WW, Gerald KM, Paul MS, Karanja J, Wa T (2009) Kinetics of copper desorption from regenerated spent bleaching earth. Am-Eur J Sci Res 4:317–323

    Google Scholar 

  134. Wankasi D, Jnr MH, & Spiff AI (2005) Desorption of Pb2+ and Cu2+ from Nipa palm (Nypa fruticans Wurmb) biomass. Afr J Biotechnol 4(9)

  135. Bhuvaneshwari S, Sruthi D, Sivasubramanian V, Kanthimathy K (2012) Regeneration of chitosan after heavy metal sorption. J Sci Ind Res 71:266–269

    Google Scholar 

  136. Sharma P, Shrivastava A (2010) Sorptionand desorption of Eu(III), Sr(II) and Sm(II) on the synthetic analogue of muscovite. Int J Adv Eng Sci Appl Math 1:212–219

    Google Scholar 

  137. Wan MW, Kan CC, Rogel BD, Dalida MLP (2010) Adsorption of copper(II) and lead (II) ions from aqueous solution on chitosan-coated sand. Carbohyd Polymer 80:891–899

    Article  Google Scholar 

  138. Osifo PO, Neomagus HWJP, Everson RC, Webster A, Gun MA (2009) The adsorption of copper in a packed-bed of chitosan beads: modeling, multiple adsorption and regeneration. J Hazard Mater 167:1242–1245

    Article  Google Scholar 

  139. Ngah WW, Endud C, Mayanar R (2002) Removal of copper (II) ions from aqueous solution onto chitosan and cross-linked chitosan beads. Reactive Functional Polymer 50:181–190

    Article  Google Scholar 

  140. Rangel-Mendez JR, Monroy-Zepeda R, Leyva-Ramos E, Diaz-Flores PE, Shirai K (2009) Chitosan selectivity for removing cadmium (II), copper (II), and lead (II) from aqueous phase: pH and organic matter effect. J Hazard Mater 162(1):503–511

    Article  Google Scholar 

  141. Zhao F, Repo E, Yin D, Sillanpää MET (2013) Adsorption of Cd(II) and Pb(II) by a novel EGTA-modified chitosan material: kinetics and isotherms. J Colloid Interface Sci 409:174–182

    Article  Google Scholar 

  142. Boyaci E, Eroglu AE, Shahwan T (2010) Sorption of As(V) from water using chitosan and chitosan-immobilized sodium silicate prior to atomic spectrometric determination. Talanta 80:1452–1460

    Article  Google Scholar 

  143. Zhou YT, Nie HL, Branford-White C, He ZY, Zhu LM (2009) Removal of Cu2+ from aqueous solution by chitosan-coated magnetic nanoparticles modified with a-ketoglutaric acid. J Colloid Interface Sci 330:29–37

    Article  Google Scholar 

  144. Kahu SS, Shekhawat A, Saravanan D, Jugade RM (2016) Two fold modified chitosan for enhanced adsorption of hexavalent chromium from simulated wastewater and industrial effluents. Carbohyd Polym 146:264–273

    Article  Google Scholar 

  145. Stopa LCB, Yamaura M (2010) Uranium removal by chitosan impregnated with magnetite nanoparticles: adsorption and desorption. Int J Nucl Energy Sci Technol 5(4):283–289

    Article  Google Scholar 

  146. Ahamed M, Marjanovic J, Mbianda X (2016) Statistical optimization, kinetic and isotherm studies on selective adsorption of silver and gold cyanocomplexes using aminoguanidyl-chitosan imprinted polymers. J Adv Chem Eng 6:1–11

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Tertiary Education Trust Fund (TETFund) of Nigeria through an Academic Staff Training and Development (AST&D) grant and UTM-Iconic Grant No.09G54.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Abbas Ahmad Zaini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Francis, A.O., Zaini, M.A.A., Muhammad, I.M. et al. Physicochemical modification of chitosan adsorbent: a perspective. Biomass Conv. Bioref. 13, 5557–5575 (2023). https://doi.org/10.1007/s13399-021-01599-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-01599-3

Keywords

Navigation