Skip to main content
Log in

Adsorption processes for forming biomaterials of cellulose and hydroxyapatite for applications in bone tissue regeneration

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

The bone regeneration process is complex and challenging and requires the application of biomaterials to promote adequate tissue growth and repair. Biomaterials traditionally used are produced with biocompatible and bioinert metal alloys, not presenting any response in the recipient tissue, whether negative, such as inflammation and infections, or positive, such as rapid and effective healing of the injured tissue. Using biomaterials with an active compound adsorbed in their structure allows a direct interaction between the material and the injured tissue, and consequent modulation of biological responses to promote bone formation. Such biomaterials can facilitate the adhesion of osteoprogenitor cells and other important biological factors for bone tissue regeneration and remodeling. This review explores the importance of considering adsorption during biomaterials production and understanding the bone regeneration process. In addition, focus is given to biomaterials produced from biopolymers based on cellulose and hydroxyapatite, as well as mechanisms of bone regeneration. Challenges remain for optimizing these processes, and the adsorption properties of different materials must be carefully investigated to guarantee adequate interaction with bone tissues and cells. Furthermore, the development of strategies to control the release of adsorbed components is crucial to obtain efficient and targeted bone tissue regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Hao, L., Li, T., Wang, L., Shi, X., Fan, Y., Du, C., Wang, Y.: Mechanistic insights into the adsorption and bioactivity of fibronectin on surfaces with varying chemistries by a combination of experimental strategies and molecular simulations. Bioact. Mater. 6, 3125–3135 (2021). https://doi.org/10.1016/j.bioactmat.2021.02.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Huang, B., He, M., Zhang, K., Sun, S., Lin, Z., Chen, D., Li, T., Chen, X.: Rotation-induced secondary structure losses and bioactivity changes of bone morphogenetic protein-2 on strontium-substituted hydroxyapatite surfaces. Appl. Surf. Sci. 511, 145623 (2020). https://doi.org/10.1016/j.apsusc.2020.145623

    Article  CAS  Google Scholar 

  3. Toledano, M., Carrasco-Carmona, Á., Medina-Castillo, A.L., Toledano-Osorio, M., Osorio, R.: Protein adsorption and bioactivity of functionalized electrospun membranes for bone regeneration. J. Dent. 102, 103473 (2020). https://doi.org/10.1016/j.jdent.2020.103473

    Article  CAS  PubMed  Google Scholar 

  4. Kalfas, I.H.: Principles of bone healing. Neurosurg. Focus 10, 22–25 (2001). https://doi.org/10.3171/foc.2001.10.4.2

    Article  Google Scholar 

  5. An, J., Leeuwenburgh, S., Wolke, J., Jansen, J.: Mineralization processes in hard tissue. Bone (2016). https://doi.org/10.1016/B978-1-78242-338-6.00005-3

    Article  Google Scholar 

  6. Buck, D.W., Dumanian, G.A.: Bone biology and physiology: Part I. The fundamentals. Plast. Reconstr. Surg. 129, 1314–1320 (2012). https://doi.org/10.1097/PRS.0b013e31824eca94

    Article  CAS  PubMed  Google Scholar 

  7. Qiu, Z., Cui, Y., Wang, X.: Natural Bone Tissue and Its Biomimetic. Elsevier Ltd, Amsterdam (2019)

    Book  Google Scholar 

  8. Komori, T.: What is the function of osteocalcin? J. Oral Biosci. 62, 223–227 (2020). https://doi.org/10.1016/j.job.2020.05.004

    Article  PubMed  Google Scholar 

  9. Hao, J., Shen, M., Wang, C., Wei, J., Wan, Q., Zhu, Y., Ye, T., Luo, M., Qin, W., Li, Y., Jiao, K., Zhao, B., Niu, L.: Regulation of biomineralization by proteoglycans: from mechanisms to application. Carbohydr. Polym. 294, 119773 (2022). https://doi.org/10.1016/j.carbpol.2022.119773

    Article  CAS  PubMed  Google Scholar 

  10. Akshata, C.R., Harichandran, G., Murugan, E.: Effect of pectin on the crystallization of strontium substituted HA for bone reconstruction application. Colloids Surf. B 226, 113312 (2023). https://doi.org/10.1016/j.colsurfb.2023.113312

    Article  CAS  Google Scholar 

  11. Akshata, C.R., Murugan, E., Harichandran, G.: Alginate templated synthesis, characterization and in vitro osteogenic evaluation of strontium-substituted hydroxyapatite. Int J Biol Macromol. 252, 126478 (2023). https://doi.org/10.1016/j.ijbiomac.2023.126478

    Article  CAS  PubMed  Google Scholar 

  12. Luz, E.P.C.G., das Chagas, B.S., de Almeida, N.T., de Fátima Borges, M., Andrade, F.K., Muniz, C.R., Castro-Silva, I.I., Teixeira, E.H., Popat, K., de Freitas Rosa, M., Vieira, R.S.: Resorbable bacterial cellulose membranes with strontium release for guided bone regeneration. Mater. Sci. Eng. C. 116, 111175 (2020). https://doi.org/10.1016/j.msec.2020.111175

    Article  CAS  Google Scholar 

  13. Ataie, M., Nourmohammadi, J., Seyedjafari, E.: Carboxymethyl carrageenan immobilized on 3D-printed polycaprolactone scaffold for the adsorption of calcium phosphate/strontium phosphate adapted to bone regeneration. Int. J. Biol. Macromol. 206, 861–874 (2022). https://doi.org/10.1016/j.ijbiomac.2022.03.096

    Article  CAS  PubMed  Google Scholar 

  14. Ayawei, N., Ebelegi, A.N., Wankasi, D.: Modelling and interpretation of adsorption isotherms. J. Chem. 2017, 1–11 (2017). https://doi.org/10.1155/2017/3039817

    Article  CAS  Google Scholar 

  15. Da̧browski, A: Adsorption—from theory to practice. Adv. Colloid Interface Sci. 93, 135–224 (2001). https://doi.org/10.1016/S0001-8686(00)00082-8

    Article  PubMed  Google Scholar 

  16. Ruthven, D.M.: Principles of Adsorption and Adsorption Processes. Wiley-Interscience, New York (1984)

    Google Scholar 

  17. Kalam, S., Abu-Khamsin, S.A., Kamal, M.S., Patil, S.: Surfactant adsorption isotherms: a review. ACS Omega 6, 32342–32348 (2021). https://doi.org/10.1021/acsomega.1c04661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ponec, V., Knor, Z., Cerny, S.: Adsorption on Solids. (2018)

  19. Pourhakkak, P., Taghizadeh, A., Taghizadeh, M., Ghaedi, M., Haghdoust, S.: Fundamentals of adsorption technology. Presented at the (2021)

  20. Teng, Y., Wang, R., Wu, J.: Study of the fundamentals of adsorption systems. Appl. Therm. Eng. 17, 327–338 (1997). https://doi.org/10.1016/S1359-4311(96)00039-7

    Article  Google Scholar 

  21. Yang, X., Wan, Y., Zheng, Y., He, F., Yu, Z., Huang, J., Wang, H., Ok, Y.S., Jiang, Y., Gao, B.: Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: a critical review. Chem. Eng. J. 366, 608–621 (2019). https://doi.org/10.1016/j.cej.2019.02.119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hadi, P., Xu, M., Ning, C., Sze Ki Lin, C., McKay, G.: A critical review on preparation, characterization and utilization of sludge-derived activated carbons for wastewater treatment. Chem. Eng. J. 260, 895–906 (2015). https://doi.org/10.1016/j.cej.2014.08.088

    Article  CAS  Google Scholar 

  23. Fiyadh, S.S., AlSaadi, M.A., Jaafar, W.Z., AlOmar, M.K., Fayaed, S.S., Mohd, N.S., Hin, L.S., El-Shafie, A.: Review on heavy metal adsorption processes by carbon nanotubes. J. Clean. Prod. 230, 783–793 (2019). https://doi.org/10.1016/j.jclepro.2019.05.154

    Article  CAS  Google Scholar 

  24. Wu, K., Li, Y., Liu, T., Huang, Q., Yang, S., Wang, W., Jin, P.: The simultaneous adsorption of nitrate and phosphate by an organic-modified aluminum-manganese bimetal oxide: adsorption properties and mechanisms. Appl. Surf. Sci. 478, 539–551 (2019). https://doi.org/10.1016/j.apsusc.2019.01.194

    Article  CAS  Google Scholar 

  25. Gao, X., Guo, C., Hao, J., Zhao, Z., Long, H., Li, M.: Adsorption of heavy metal ions by sodium alginate based adsorbent-a review and new perspectives. Int. J. Biol. Macromol. 164, 4423–4434 (2020). https://doi.org/10.1016/j.ijbiomac.2020.09.046

    Article  CAS  PubMed  Google Scholar 

  26. Patel, H.: Fixed-bed column adsorption study: a comprehensive review. Appl. Water Sci. 9, 45 (2019). https://doi.org/10.1007/s13201-019-0927-7

    Article  CAS  Google Scholar 

  27. Vidali, G., Ihm, G., Kim, H.-Y., Cole, M.W.: Potentials of physical adsorption. Surf. Sci. Rep. 12, 135–181 (1991). https://doi.org/10.1016/0167-5729(91)90012-M

    Article  Google Scholar 

  28. Agboola, O.D., Benson, N.U.: Physisorption and chemisorption mechanisms influencing micro (nano) plastics-organic chemical contaminants interactions: a review. Front. Environ. Sci. (2021). https://doi.org/10.3389/fenvs.2021.678574

    Article  Google Scholar 

  29. Kumar, E., Bhatnagar, A., Hogland, W., Marques, M., Sillanpää, M.: Interaction of inorganic anions with iron-mineral adsorbents in aqueous media—a review. Adv. Colloid Interface Sci. 203, 11–21 (2014). https://doi.org/10.1016/j.cis.2013.10.026

    Article  CAS  PubMed  Google Scholar 

  30. Gayathiri, M., Pulingam, T., Lee, K.T., Sudesh, K.: Activated carbon from biomass waste precursors: Factors affecting production and adsorption mechanism. Chemosphere 294, 133764 (2022). https://doi.org/10.1016/j.chemosphere.2022.133764

    Article  CAS  PubMed  Google Scholar 

  31. Ali, I., Gupta, V.K.: Advances in water treatment by adsorption technology. Nat. Protoc. 1, 2661–2667 (2006). https://doi.org/10.1038/nprot.2006.370

    Article  CAS  PubMed  Google Scholar 

  32. Foroutan, R., Peighambardoust, S.J., Hosseini, S.S., Akbari, A., Ramavandi, B.: Hydroxyapatite biomaterial production from chicken (femur and beak) and fishbone waste through a chemical less method for Cd2+ removal from shipbuilding wastewater. J. Hazard. Mater. 413, 125428 (2021). https://doi.org/10.1016/j.jhazmat.2021.125428

    Article  CAS  PubMed  Google Scholar 

  33. Sirajudheen, P., Poovathumkuzhi, N.C., Vigneshwaran, S., Chelaveettil, B.M., Meenakshi, S.: Applications of chitin and chitosan based biomaterials for the adsorptive removal of textile dyes from water—a comprehensive review. Carbohydr. Polym. 273, 118604 (2021). https://doi.org/10.1016/j.carbpol.2021.118604

    Article  CAS  PubMed  Google Scholar 

  34. Giorgio, I., Dell’Isola, F., Andreaus, U., Alzahrani, F., Hayat, T., Lekszycki, T.: On mechanically driven biological stimulus for bone remodeling as a diffusive phenomenon. Biomech. Model. Mechanobiol. 18, 1639–1663 (2019). https://doi.org/10.1007/s10237-019-01166-w

    Article  PubMed  Google Scholar 

  35. Mikai, A., Ono, M., Tosa, I., Nguyen, H.T.T., Hara, E.S., Nosho, S., Kimura-Ono, A., Nawachi, K., Takarada, T., Kuboki, T., Oohashi, T.: BMP-2/β-TCP Local Delivery for Bone Regeneration in MRONJ-Like Mouse Model. Int. J. Mol. Sci. 21, 7028 (2020). https://doi.org/10.3390/ijms21197028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wei, F., Flowerdew, K., Kinzel, M., Perotti, L.E., Asiatico, J., Omer, M., Hovell, C., Reumers, V., Coathup, M.J.: Changes in interstitial fluid flow, mass transport and the bone cell response in microgravity and normogravity. Bone Res. 10, 65 (2022). https://doi.org/10.1038/s41413-022-00234-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Marongiu, G., Dolci, A., Verona, M., Capone, A.: The biology and treatment of acute long-bones diaphyseal fractures: overview of the current options for bone healing enhancement. Bone Rep. 12, 100249 (2020). https://doi.org/10.1016/j.bonr.2020.100249

    Article  PubMed  PubMed Central  Google Scholar 

  38. Maruyama, M., Rhee, C., Utsunomiya, T., Zhang, N., Ueno, M., Yao, Z., Goodman, S.B.: Modulation of the inflammatory response and bone healing. Front. Endocrinol. (2020). https://doi.org/10.3389/fendo.2020.00386

    Article  Google Scholar 

  39. Al-Bari, A.A., Al Mamun, A.: Current advances in regulation of bone homeostasis. FASEB BioAdv. 2, 668–679 (2020). https://doi.org/10.1096/fba.2020-00058

    Article  PubMed  PubMed Central  Google Scholar 

  40. Duan, L., Liang, Y., Xu, X., Wang, J., Li, X., Sun, D., Deng, Z., Li, W., Wang, D.: Noncoding RNAs in subchondral bone osteoclast function and their therapeutic potential for osteoarthritis. Arthritis Res. Ther. 22, 279 (2020). https://doi.org/10.1186/s13075-020-02374-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Xie, Y., Hu, C., Feng, Y., Li, D., Ai, T., Huang, Y., Chen, X., Huang, L., Tan, J.: Osteoimmunomodulatory effects of biomaterial modification strategies on macrophage polarization and bone regeneration. Regen. Biomater. 7, 233–245 (2020). https://doi.org/10.1093/rb/rbaa006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Civitelli, R., Ziambaras, K.: Calcium and phosphate homeostasis: concerted interplay of new regulators., (2011)

  43. Balasooriya, I.L., Chen, J., Korale Gedara, S.M., Han, Y., Wickramaratne, M.N.: Applications of nano hydroxyapatite as adsorbents: a review. Nanomaterials 12, 2324 (2022). https://doi.org/10.3390/nano12142324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yang, Y., Xiao, Y.: Biomaterials regulating bone hematoma for osteogenesis. Adv. Healthc. Mater. 9, 2000726 (2020). https://doi.org/10.1002/adhm.202000726

    Article  CAS  Google Scholar 

  45. Zheng, K., Kapp, M., Boccaccini, A.R.: Protein interactions with bioactive glass surfaces: a review. Appl. Mater. Today 15, 350–371 (2019). https://doi.org/10.1016/j.apmt.2019.02.003

    Article  Google Scholar 

  46. Caballé-Serrano, J., Abdeslam-Mohamed, Y., Munar-Frau, A., Fujioka-Kobayashi, M., Hernández-Alfaro, F., Miron, R.: Adsorption and release kinetics of growth factors on barrier membranes for guided tissue/bone regeneration: a systematic review. Arch. Oral Biol. 100, 57–68 (2019). https://doi.org/10.1016/j.archoralbio.2019.02.006

    Article  CAS  PubMed  Google Scholar 

  47. Ivanets, A.I., Kitikova, N.V., Shashkova, I.L., Roshchina, M.Y., Srivastava, V., Sillanpää, M.: Adsorption performance of hydroxyapatite with different crystalline and porous structure towards metal ions in multicomponent solution. J. Water Process Eng. 32, 100963 (2019). https://doi.org/10.1016/j.jwpe.2019.100963

    Article  Google Scholar 

  48. Izquierdo-Barba, I., Santos-Ruiz, L., Becerra, J., Feito, M.J., Fernández-Villa, D., Serrano, M.C., Díaz-Güemes, I., Fernández-Tomé, B., Enciso, S., Sánchez-Margallo, F.M., Monopoli, D., Afonso, H., Portolés, M.T., Arcos, D., Vallet-Regí, M.: Synergistic effect of Si-hydroxyapatite coating and VEGF adsorption on Ti6Al4V-ELI scaffolds for bone regeneration in an osteoporotic bone environment. Acta Biomater. 83, 456–466 (2019). https://doi.org/10.1016/j.actbio.2018.11.017

    Article  CAS  PubMed  Google Scholar 

  49. Liu, Z., Yamada, S., Otsuka, Y., Peñaflor Galindo, T.G., Tagaya, M.: Surface modification of hydroxyapatite nanoparticles for bone regeneration by controlling their surface hydration and protein adsorption states. Dalt. Trans. 51, 9572–9583 (2022). https://doi.org/10.1039/D2DT00969B

    Article  CAS  Google Scholar 

  50. Ma, K., Cui, H., Zhou, A., Wu, H., Dong, X., Zu, F., Yi, J., Wang, R., Xu, Q.: Mesoporous hydroxyapatite: synthesis in molecular self-assembly and adsorption properties. Microporous Mesoporous Mater. 323, 111164 (2021). https://doi.org/10.1016/j.micromeso.2021.111164

    Article  CAS  Google Scholar 

  51. Seims, K.B., Hunt, N.K., Chow, L.W.: Strategies to control or mimic growth factor activity for bone, cartilage, and osteochondral tissue engineering. Bioconjug. Chem. 32, 861–878 (2021). https://doi.org/10.1021/acs.bioconjchem.1c00090

    Article  CAS  PubMed  Google Scholar 

  52. You, Y., Keqi, Q., Huang, Z., Ma, R., Shi, C., Li, X., Liu, D., Dong, M., Guo, Z.: Sodium alginate templated hydroxyapatite/calcium silicate composite adsorbents for efficient dye removal from polluted water. Int. J. Biol. Macromol. 141, 1035–1043 (2019). https://doi.org/10.1016/j.ijbiomac.2019.09.082

    Article  CAS  PubMed  Google Scholar 

  53. Bal, Z., Kaito, T., Korkusuz, F., Yoshikawa, H.: Bone regeneration with hydroxyapatite-based biomaterials. Emergent Mater. 3, 521–544 (2020). https://doi.org/10.1007/s42247-019-00063-3

    Article  CAS  Google Scholar 

  54. Gavinho, S.R., Bozdag, M., Kalkandelen, C., Regadas, J.S., Jakka, S.K., Gunduz, O., Oktar, F.N., Graça, M.P.F.: An eco-friendly process to extract hydroxyapatite from sheep bones for regenerative medicine: structural, morphologic and electrical studies. J. Funct. Biomater. 14, 279 (2023). https://doi.org/10.3390/jfb14050279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hou, X., Zhang, L., Zhou, Z., Luo, X., Wang, T., Zhao, X., Lu, B., Chen, F., Zheng, L.: Calcium Phosphate-Based Biomaterials for Bone Repair. J. Funct. Biomater. 13, 187 (2022). https://doi.org/10.3390/jfb13040187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ielo, I., Calabrese, G., De Luca, G., Conoci, S.: Recent advances in hydroxyapatite-based biocomposites for bone tissue regeneration in orthopedics. Int. J. Mol. Sci. 23, 9721 (2022). https://doi.org/10.3390/ijms23179721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gorgieva, T.: Bacterial cellulose: production, modification and perspectives in biomedical applications. Nanomaterials 9, 1352 (2019). https://doi.org/10.3390/nano9101352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lin, D., Liu, Z., Shen, R., Chen, S., Yang, X.: Bacterial cellulose in food industry: current research and future prospects. Int. J. Biol. Macromol. 158, 1007–1019 (2020). https://doi.org/10.1016/j.ijbiomac.2020.04.230

    Article  CAS  PubMed  Google Scholar 

  59. Swingler, S., Gupta, A., Gibson, H., Kowalczuk, M., Heaselgrave, W., Radecka, I.: Recent advances and applications of bacterial cellulose in biomedicine. Polymers (Basel) 13, 412 (2021). https://doi.org/10.3390/polym13030412

    Article  CAS  PubMed  Google Scholar 

  60. Ahn, S.-J., Shin, Y.M., Kim, S.E., Jeong, S.I., Jeong, J.-O., Park, J.-S., Gwon, H.-J., Seo, D.E., Nho, Y.-C., Kang, S.S., Kim, C.-Y., Huh, J.-B., Lim, Y.-M.: Characterization of hydroxyapatite-coated bacterial cellulose scaffold for bone tissue engineering. Biotechnol. Bioprocess. Eng. 20, 948–955 (2015). https://doi.org/10.1007/s12257-015-0176-z

    Article  CAS  Google Scholar 

  61. Torgbo, S., Sukyai, P.: Fabrication of microporous bacterial cellulose embedded with magnetite and hydroxyapatite nanocomposite scaffold for bone tissue engineering. Mater. Chem. Phys. 237, 121868 (2019). https://doi.org/10.1016/j.matchemphys.2019.121868

    Article  CAS  Google Scholar 

  62. Núñez, D., Cáceres, R., Ide, W., Varaprasad, K., Oyarzún, P.: An ecofriendly nanocomposite of bacterial cellulose and hydroxyapatite efficiently removes lead from water. Int. J. Biol. Macromol. 165, 2711–2720 (2020). https://doi.org/10.1016/j.ijbiomac.2020.10.055

    Article  CAS  PubMed  Google Scholar 

  63. Wen, Y., Liu, J., Jiang, L., Zhu, Z., He, S., He, S., Shao, W.: Development of intelligent/active food packaging film based on TEMPO-oxidized bacterial cellulose containing thymol and anthocyanin-rich purple potato extract for shelf life extension of shrimp. Food Packag. Shelf Life 29, 100709 (2021). https://doi.org/10.1016/j.fpsl.2021.100709

    Article  CAS  Google Scholar 

  64. Valls, C., Cusola, O., Roncero, M.B.: Evaluating the potential of ozone in creating functional groups on cellulose. Cellulose 29, 6595–6610 (2022). https://doi.org/10.1007/s10570-022-04694-4

    Article  CAS  Google Scholar 

  65. Solomevich, S.O., Dmitruk, E.I., Bychkovsky, P.M., Nebytov, A.E., Yurkshtovich, T.L., Golub, N.V.: Fabrication of oxidized bacterial cellulose by nitrogen dioxide in chloroform/cyclohexane as a highly loaded drug carrier for sustained release of cisplatin. Carbohydr. Polym. 248, 116745 (2020). https://doi.org/10.1016/j.carbpol.2020.116745

    Article  CAS  PubMed  Google Scholar 

  66. Luz, E.P.C.G., Chaves, P.H.S., de Vieira, L.A.P., Ribeiro, S.F., de Borges, M.F., Andrade, F.K., Muniz, C.R., Infantes-Molina, A., Rodríguez-Castellón, E., de Rosa, M.F., Vieira, R.S.: In vitro degradability and bioactivity of oxidized bacterial cellulose- hydroxyapatite composites. Carbohydr. Polym. 237, 116174 (2020). https://doi.org/10.1016/j.carbpol.2020.116174

    Article  CAS  PubMed  Google Scholar 

  67. Vasconcelos, N.F., Andrade, F.K., de Vieira, L.A.P., Vieira, R.S., Vaz, J.M., Chevallier, P., Mantovani, D., de Borges, M.F., de Rosa, M.F.: Oxidized bacterial cellulose membrane as support for enzyme immobilization: properties and morphological features. Cellulose 27, 3055–3083 (2020). https://doi.org/10.1007/s10570-020-02966-5

    Article  CAS  Google Scholar 

  68. Luo, H., Xiong, G., Hu, D., Ren, K., Yao, F., Zhu, Y., Gao, C., Wan, Y.: Characterization of TEMPO-oxidized bacterial cellulose scaffolds for tissue engineering applications. Mater. Chem. Phys. 143, 373–379 (2013). https://doi.org/10.1016/j.matchemphys.2013.09.012

    Article  CAS  Google Scholar 

  69. Yang, M., Zhen, W., Chen, H., Shan, Z.: Biomimetic design of oxidized bacterial cellulose-gelatin-hydroxyapatite nanocomposites. J. Bionic Eng. 13, 631–640 (2016). https://doi.org/10.1016/S1672-6529(16)60334-7

    Article  Google Scholar 

  70. Abou-Zeid, R.E., Awwad, N.S., Nabil, S., Salama, A., Youssef, M.A.: Oxidized alginate/gelatin decorated silver nanoparticles as new nanocomposite for dye adsorption. Int. J. Biol. Macromol. 141, 1280–1286 (2019). https://doi.org/10.1016/j.ijbiomac.2019.09.076

    Article  CAS  PubMed  Google Scholar 

  71. Georgouvelas, D., Abdelhamid, H.N., Li, J., Edlund, U., Mathew, A.P.: All-cellulose functional membranes for water treatment: adsorption of metal ions and catalytic decolorization of dyes. Carbohydr. Polym. 264, 118044 (2021). https://doi.org/10.1016/j.carbpol.2021.118044

    Article  CAS  PubMed  Google Scholar 

  72. Rahmatika, A.M., Goi, Y., Kitamura, T., Widiyastuti, W., Ogi, T.: TEMPO-oxidized cellulose nanofiber (TOCN) decorated macroporous silica particles: synthesis, characterization, and their application in protein adsorption. Mater. Sci. Eng. C 105, 110033 (2019). https://doi.org/10.1016/j.msec.2019.110033

    Article  CAS  Google Scholar 

  73. Cao, S., Li, Q., Zhang, S., Liu, K., Yang, Y., Chen, J.: Oxidized bacterial cellulose reinforced nanocomposite scaffolds for bone repair. Colloids Surf. B 211, 112316 (2022). https://doi.org/10.1016/j.colsurfb.2021.112316

    Article  CAS  Google Scholar 

  74. Wsoo, M.A., Shahir, S., Mohd Bohari, S.P., Nayan, N.H.M., Razak, S.I.A.: A review on the properties of electrospun cellulose acetate and its application in drug delivery systems: a new perspective. Carbohydr. Res. 491, 107978 (2020). https://doi.org/10.1016/j.carres.2020.107978

    Article  CAS  PubMed  Google Scholar 

  75. Yadav, N., Hakkarainen, M.: Degradable or not? Cellulose acetate as a model for complicated interplay between structure, environment and degradation. Chemosphere 265, 128731 (2021). https://doi.org/10.1016/j.chemosphere.2020.128731

    Article  CAS  PubMed  Google Scholar 

  76. Heinze, T., Liebert, T.: 4.2 Chemical characteristics of cellulose acetate. Macromol. Symp. 208, 167–238 (2004). https://doi.org/10.1002/masy.200450408

    Article  CAS  Google Scholar 

  77. Maia, M.T., Luz, É.P.C.G., Andrade, F.K., de Rosa, M.F., de Borges, M.F., Arcanjo, M.R.A., Vieira, R.S.: Advances in bacterial cellulose/strontium apatite composites for bone applications. Polym. Rev. 61, 736–764 (2021). https://doi.org/10.1080/15583724.2021.1896543

    Article  CAS  Google Scholar 

  78. Eslah, S., Nouri, M.: Fabrication of electrically conductive cellulose acetate/polyaniline/WO3 nanocomposite nanofibers with potential applications in electrochemical devices. Polym. Sci. Ser. A. 61, 345–356 (2019). https://doi.org/10.1134/S0965545X19030040

    Article  Google Scholar 

  79. El-Naggar, M.E., Abdel-Karim, A., Radwan, E.K., Sharmoukh, W., Wassel, A.R., Bayoumy, A.M., Ibrahim, M.: Experimental and theoretical investigations on fouling resistant cellulose acetate/SiO2 NPs/PEDOT ultrafiltration nanocomposite membranes. J. Clean. Prod. 324, 129288 (2021). https://doi.org/10.1016/j.jclepro.2021.129288

    Article  CAS  Google Scholar 

  80. Al-Harbi, N., Hussein, M.A., Al-Hadeethi, Y., Umar, A.: Cellulose acetate-hydroxyapatite-bioglass-zirconia nanocomposite particles as potential biomaterial: synthesis, characterization, and biological properties for bone application. Eng. Sci. (2021). https://doi.org/10.30919/es8d528

    Article  Google Scholar 

  81. Zhong, Z., Qin, J., Ma, J.: Cellulose acetate/hydroxyapatite/chitosan coatings for improved corrosion resistance and bioactivity. Mater. Sci. Eng., C 49, 251–255 (2015). https://doi.org/10.1016/j.msec.2015.01.020

    Article  CAS  Google Scholar 

  82. Kołodziejska, B., Stępień, N., Kolmas, J.: The influence of strontium on bone tissue metabolism and its application in osteoporosis treatment. Int. J. Mol. Sci. 22, 6564 (2021). https://doi.org/10.3390/ijms22126564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Luz, E.P.C.G., de Borges, M.F., Andrade, F.K., de Rosa, M.F., Infantes-Molina, A., Rodríguez-Castellón, E., Vieira, R.S.: Strontium delivery systems based on bacterial cellulose and hydroxyapatite for guided bone regeneration. Cellulose. 25, 6661–6679 (2018). https://doi.org/10.1007/s10570-018-2008-8

    Article  CAS  Google Scholar 

  84. de Soares, A.L.B., Maia, M.T., Gomes, S.D.L., da Silva, T.F., Vieira, R.S.: Polysaccharide-based bioactive adsorbents for blood-contacting implant devices. Braz. J. Chem. Eng. (2022). https://doi.org/10.1007/s43153-022-00253-3

    Article  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil (CNPq—442734/2020-4).

Funding

This work was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil (CNPq-442734/2020-4).

Author information

Authors and Affiliations

Authors

Contributions

ALdBS: investigation, methodology, formal analysis, writing—original draft, visualization. EPCGL: formal analysis, writing—review and editing, visualization, and RSV: formal analysis, resources, validation, review and editing, supervision.

Corresponding author

Correspondence to Rodrigo Silveira Vieira.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Brito Soares, A.L., Luz, E.P.C.G. & Vieira, R.S. Adsorption processes for forming biomaterials of cellulose and hydroxyapatite for applications in bone tissue regeneration. Adsorption (2024). https://doi.org/10.1007/s10450-024-00441-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10450-024-00441-2

Keywords

Navigation