Skip to main content
Log in

Predicting hydrogen storage at 298 K in activated carbons

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Vehicular hydrogen has been stored in special tanks at very high pressures (700 bar) with obvious disadvantages in the energy cost of compression and safety. The use of adsorbed H2 instead of compressed H2 can be a solution to enable safer and more economical storage. Conducting experimental studies of H2 adsorption at high pressures may present operational difficulties and risks. In this study we propose the prediction of H2 adsorption up to 700 bar using the Monte Carlo algorithm in the grand canonical ensemble and the representative pores method. The prediction was carried out in eight commercial activated carbons, the results showed a good agreement between the experimental and simulated data. It was possible to determine the maximum pressure where the highest adsorption of H2 occurs at 298 K with emphasis on Maxsorb that reached 6.14 wt % at 700 bar, near the US Department of Energy (DOE) target value of 6.5 wt%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data will be made available upon request.

References

  1. Mohan, M., Sharma, V.K., Kumar, E.A., Gayathri, V.: Hydrogen storage in carbon materials—A review. Energy Storage. 1, e35 (2019). https://doi.org/10.1002/est2.35

    Article  CAS  Google Scholar 

  2. Ramirez-Vidal, P., Canevesi, R.L.S., Sdanghi, G., Schaefer, S., Maranzana, G., Celzard, A., Fierro, V.: A Step Forward in understanding the Hydrogen Adsorption and Compression on activated carbons. ACS Appl. Mater. Interfaces. 13, 12562–12574 (2021). https://doi.org/10.1021/acsami.0c22192

    Article  CAS  PubMed  Google Scholar 

  3. Fomkin, A., Pribylov, A., Men’shchikov, I., Shkolin, A., Aksyutin, O., Ishkov, A., Romanov, K., Khozina, E.: Adsorption-based hydrogen storage in activated carbons and Model Carbon Structures. Reactions. 2, 209–226 (2021). https://doi.org/10.3390/reactions2030014

    Article  Google Scholar 

  4. Villajos, J.A.: Experimental volumetric hydrogen uptake determination at 77 K of commercially available Metal-Organic Framework materials. C. 8, 5 (2022). https://doi.org/10.3390/c8010005

    Article  CAS  Google Scholar 

  5. Zhang, H., Zhu, Y., Liu, Q., Li, X.: Preparation of porous carbon materials from biomass pyrolysis vapors for hydrogen storage. Appl. Energy. 306, 118131 (2022). https://doi.org/10.1016/j.apenergy.2021.118131

    Article  CAS  Google Scholar 

  6. Dong, J., Wang, X., Xu, H., Zhao, Q., Li, J.: Hydrogen storage in several microporous zeolites. Int. J. Hydrogen Energy. 32, 4998–5004 (2007). https://doi.org/10.1016/j.ijhydene.2007.08.009

    Article  CAS  Google Scholar 

  7. Marsh, H., Rodriguez-Reinoso, R.-R., Marsh, F., Rodríguez-Reinoso, H.: F.: Activated Carbon. Elsevier, London (2006)

    Book  Google Scholar 

  8. Rouquerol, F., Rouquerol, J., Sing, K.: Adsorption by Powders and Porous Solids. Academic Press, San Diego (2014)

    Google Scholar 

  9. Ustinov, E.A., Gavrilov, V.Y., Mel’gunov, M.S., Sokolov, V.V., Berveno, V.P., Berveno, A.V.: Characterization of activated carbons with low-temperature hydrogen adsorption. Carbon N. Y. 121, 563–573 (2017). https://doi.org/10.1016/j.carbon.2017.06.026

    Article  CAS  Google Scholar 

  10. Kuchta, B., Firlej, L., Pfeifer, P., Wexler, C.: Numerical estimation of hydrogen storage limits in carbon-based nanospaces. Carbon N. Y. 48, 223–231 (2010). https://doi.org/10.1016/j.carbon.2009.09.009

    Article  CAS  Google Scholar 

  11. Lucena, S.M.P., Gomes, V., Gonçalves, D.V., Mileo, P.G.M., Silvino, P.F.G.: Molecular simulation of the accumulation of alkanes from natural gas in carbonaceous materials. Carbon N. Y. 61, 624–632 (2013). https://doi.org/10.1016/j.carbon.2013.05.046

    Article  CAS  Google Scholar 

  12. Gonçalves, D.V., Paiva, M.A.G., Oliveira, J.C.A., Bastos-Neto, M., Lucena, S.M.P.: Prediction of the monocomponent adsorption of H2S and mixtures with CO2 and CH4 on activated carbons. Colloids Surf. Physicochem Eng Asp. 559, 342–350 (2018). https://doi.org/10.1016/j.colsurfa.2018.09.082

    Article  CAS  Google Scholar 

  13. Menezes, R.L.C.B., Moura, K.O., De Lucena, S.M.P., Azevedo, D.C.S., Bastos-Neto, M.: Insights on the Mechanisms of H2S Retention at Low Concentration on Impregnated Carbons. Ind. Eng. Chem. Res. 57, 2248–2257 (2018). https://doi.org/10.1021/acs.iecr.7b03402

    Article  CAS  Google Scholar 

  14. Peixoto, H.R., Gonçalves, D.V., Torres, E.B., Lucena, S.M.P.: Carbon natural gas storage performance as predicted by multiscale modeling. Chem. Eng. J. 426, 131593 (2021). https://doi.org/10.1016/j.cej.2021.131593

    Article  CAS  Google Scholar 

  15. Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Claredon Press Oxford, New York (1987)

    Google Scholar 

  16. Lucena, S.M.P., Snurr, R.Q., Cavalcante, C.L.: Studies on adsorption equilibrium of xylenes in AEL framework using biased GCMC and energy minimization. Microporous Mesoporous Mater. 111, 89–96 (2008). https://doi.org/10.1016/j.micromeso.2007.07.021

    Article  CAS  Google Scholar 

  17. Nicholson, D., Parsonage, N.G.: Computer Simulation and the Statistical Mechanics of Adsorption. Academic Press, London (1982)

    Google Scholar 

  18. Kowalczyk, P., Gauden, P., Terzyk, A.P., Bhatia, S.K.: Thermodynamics of hydrogen adsorption in slit-like carbon nanopores at 77 K. classical versus path-integral Monte Carlo simulations. Langmuir. 23, 3666–3672 (2007). https://doi.org/10.1021/la062572o

    Article  CAS  PubMed  Google Scholar 

  19. Tanaka, H., Kanoh, H., El-Merraoui, M., Steele, W.A., Yudasaka, M., Iijima, S., Kaneko, K.: Quantum effects on hydrogen adsorption in internal nanospaces of single-wall carbon nanohorns. J. Phys. Chem. B. 108, 17457–17465 (2004). https://doi.org/10.1021/jp048603a

    Article  CAS  Google Scholar 

  20. Guimarães, A.P., Möller, A., Staudt, R., De Azevedo, D.C.S., Lucena, S.M.P., Cavalcante, C.L.: Diffusion of linear paraffins in silicalite studied by the ZLC method in the presence of CO2. Adsorption. 16, 29–36 (2010). https://doi.org/10.1007/s10450-010-9205-6

    Article  CAS  Google Scholar 

  21. Cornette, V., Villarroel-Rocha, J., Sapag, K., Delgado Mons, R., Toso, J.P., López, R.H.: Insensitivity in the pore size distribution of ultramicroporous carbon materials by CO2 adsorption. Carbon N. Y. 168, 508–514 (2020). https://doi.org/10.1016/j.carbon.2020.07.011

    Article  CAS  Google Scholar 

  22. Davies, G.M., Seaton, N.: Development and validation of pore structure models for activated carbons. Langmuir. 15, 6263 (1999). https://doi.org/10.1021/la990160s

    Article  CAS  Google Scholar 

  23. Lucena, S.M.P., Gonçalves, R.V., Silvino, P.F.G., Gonçalves, D.V., Oliveira, J.C.A.: Fingerprints of heterogeneities from carbon oxidative process: A reactive molecular dynamics study. Microporous Mesoporous Mater. 304, 109061 (2020). https://doi.org/10.1016/j.micromeso.2018.07.051

    Article  CAS  Google Scholar 

  24. Quirke, N., Tennison, S.R.R.R.R.: The interpretation of pore size distributions of microporous carbons. Carbon N. Y. 34, 1281–1286 (1996). https://doi.org/10.1016/0008-6223(96)00099-1

    Article  CAS  Google Scholar 

  25. Zelenka, T., Horikawa, T., Do, D.D.: Artifacts and misinterpretations in gas physisorption measurements and characterization of porous solids. Adv. Colloid Interface Sci. (2023). https://doi.org/10.1016/j.cis.2022.102831

    Article  PubMed  Google Scholar 

  26. Ravikovitch, P.I., Vishnyakov, A., Russo, R., Neimark, A.V.: Unified Approach to pore size characterization of Microporous Carbonaceous materials from N2, Ar, and CO2 Adsorption Isotherms. Langmuir. 16, 2311–2320 (2000). https://doi.org/10.1021/la991011c

    Article  CAS  Google Scholar 

  27. de Oliveira, J.C.A., Galdino, A.L., Gonçalves, D.V., Silvino, P.F.G.G., Cavalcante, C.L., Bastos-Neto, M., Azevedo, D.C.S., Lucena, S.M.P.P.: Representative Pores: An efficient method to characterize activated carbons. Front. Chem. 8, 1–9 (2021). https://doi.org/10.3389/fchem.2020.595230

    Article  CAS  Google Scholar 

  28. Oliveira, J.C.A., Gonçalves, D.V., Silvino, P.F.G., de Lucena, S.M.P.: Activated carbon characterization with heterogenous kernel using CO2 at high pressure. Adsorption. (2023). https://doi.org/10.1007/s10450-023-00375-1

    Article  Google Scholar 

  29. Lucena, S.M.P., Paiva, C.A.S., Silvino, P.F.G., Azevedo, D.C.S., Cavalcante, C.L. Jr., Cavalcante, C.L.: The effect of heterogeneity in the randomly etched graphite model for carbon pore size characterization. Carbon N. Y. 48, 2554–2565 (2010). https://doi.org/10.1016/j.carbon.2010.03.034

    Article  CAS  Google Scholar 

  30. Do, D.D., Nicholson, D., Do, H.D.: Heat of adsorption and density distribution in slit pores with defective walls: GCMC simulation studies and comparison with experimental data. Appl. Surf. Sci. 253, 5580–5586 (2007). https://doi.org/10.1016/j.apsusc.2006.12.057

    Article  CAS  Google Scholar 

  31. Zubizarreta, L., Gomez, E.I., Arenillas, A., Ania, C.O., Parra, J.B., Pis, J.J.: H2 storage in carbon materials. Adsorption. 14, 557–566 (2008). https://doi.org/10.1007/s10450-008-9116-y

    Article  CAS  Google Scholar 

  32. Pfeifer, P., Little, R., Rash, T., Romanos, J.: B.M.: Advanced Natural Gas Fuel Tank Project. University of Missouri, Columbia (2016)

    Google Scholar 

  33. Zhang, H., Deria, P., Farha, O.K., Hupp, J.T., Snurr, R.Q.: A thermodynamic tank model for studying the effect of higher hydrocarbons on natural gas storage in metal-organic frameworks. Energy Environ. Sci. 8, 1501–1510 (2015). https://doi.org/10.1039/c5ee00808e

    Article  CAS  Google Scholar 

  34. ARPA-E: : MOVE Program Overview, https://arpa-e.energy.gov/sites/default/files/documents/files/MOVE_ProgramOverview.pdf

  35. Matranga, K.R., Myers, A.L., Glandt, E.D.: Storage of natural gas by adsorption on activated carbon. Chem. Eng. Sci. 47, 1569–1579 (1992). https://doi.org/10.1016/0009-2509(92)85005-V

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge financial support for this study from CAPES, CNPq and FUNCAP and the use of the computer cluster at National Laboratory of Scientific Computing (LNCC/MCTI, Brazil).

Funding

This work has been financially supported by Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico (FUNCAP), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Author information

Authors and Affiliations

Authors

Contributions

JCAO: Conceptualization, methodology, original draft preparation and Monte Carlo simulation. DVG: Conceptualization, methodology and writing. DLM: Writing, review and editing. SMPL: Conceptualization, methodology, writing, review and editing.

Corresponding author

Correspondence to Sebastião M. P. Lucena.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, J.C.A., Gonçalves, D.V., Montenegro, D.L. et al. Predicting hydrogen storage at 298 K in activated carbons. Adsorption (2023). https://doi.org/10.1007/s10450-023-00423-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10450-023-00423-w

Keywords

Navigation