Skip to main content
Log in

Modelling of non-isothermal adsorption of gases in nanoporous adsorbent based on Langmuir equilibrium

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

The non-isothermal adsorption/desorption of gas in a cylindrical column filled with adsorbent particles has been considered theoretically. The model is based on Langmuir theory for equilibrium adsorption. Using the Heaviside operational method the analytical solutions for kinetics of changes of concentration of adsorbate in the inter- and intra-particle spaces were obtained. The numerical calculations of gas adsorption at different temperature of the gas flow (Ta = 273–373 K) followed by desorption by the flow of inert gas through the column at Td = 673 K were done. The results revealed the rather complex interrelations between spatial–temporal dependencies in distribution of concentrations of adsorbed gas inside adsorption column and temperatures of inlet gas.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

a :

Concentration of adsorbate in the intra-particle space (nanopores) (ppmv)

a m :

Maximum value of a (ppmv)

c :

Concentration of adsorbate in the inter-particle space (ppmv)

c m :

Maximum value of c (ppmv)

D :

Effective diffusion coefficient in the interparticle space (m2/c)

l :

Length of adsorption column (m)

h g :

Heat capacity of gas; kJ /(kg·K)

h t :

Effective heat capacity of gas and adsorbent kJ /(kg·K);

ΔH :

Activation energy of adsorption/desorption (kJ/mol)

Q ads :

Heat of adsorption in nanopores (kJ/kg)

R :

Universal gas constant (= 8.314 4621(75) J/(K mol));

r :

Radius of adsorption column (m)

T :

Temperature (K)

T a :

Temperature of the inlet gas flow for adsorption, Ta = 273–373 K (K)

T d :

Temperature of the inlet inert gas flow for desorption, Td = 623 K, (K)

T e :

Equilibrium temperature (K)

t :

Time (s)

u :

Linear velocity of the gas flow (m/c)

z :

Distance along the column starting from the inlet (m)

α h :

Coefficient of heat transfer from the gas-phase to the wall (W/(m2K))

β :

total mass transfer coefficient (C−1)

Λ :

Coefficient of thermal diffusion of fluid (kJ /(m2·K·s))

ρ :

Bulk density –of particle packing in the adsorbent (kg/m3)

References

  1. Feng, C., Jiaqiang, E., Han, W., Deng, Y., Zhang, B., Zhao, X., Han, D.: Key technology and application analysis of zeolite adsorption for energy storage and heat-mass transfer process: A review. Renew. Sustain. Energy Rev. 144, 110954 (2021). https://doi.org/10.1016/j.rser.2021.110954

    Article  CAS  Google Scholar 

  2. Rad, L.R., Anbia, M.: Zeolite-based composites for the adsorption of toxic matters from water: a review. J. Environ. Chem. Eng. 9, 106088 (2021). https://doi.org/10.1016/j.jece.2021.106088

    Article  CAS  Google Scholar 

  3. Beckwée, E.J., Wittevrongel, G.R., Claessens, B.: Comparing column dynamics in the liquid and vapor phase adsorption of biobutanol on an activated carbon monolith. Adsorption (2022). https://doi.org/10.1007/s10450-022-00362-y

    Article  Google Scholar 

  4. Nandanwar, S.U., Corbin, D.R., Shiflett, M.B.: A review of porous adsorbents for the separation of nitrogen from natural gas. Ind. \& Eng. Chem. Res. 59, 13355–13369 (2020). https://doi.org/10.1021/acs.iecr.0c02730

    Article  CAS  Google Scholar 

  5. Qian, Z., Wei, L., Mingyue, W., Guansheng, Q.: Application of amine-modified porous materials for CO2 adsorption in mine confined spaces. Colloids Surf. A Physicochem. Eng. Asp. 629, 127483 (2021). https://doi.org/10.1016/j.colsurfa.2021.127483

    Article  CAS  Google Scholar 

  6. Wang, Y., Wang, C., Wang, L., Wang, L., Xiao, F.-S.: Zeolite fixed metal nanoparticles: new perspective in catalysis. Acc. Chem. Res. 54, 2579–2590 (2021). https://doi.org/10.1021/acs.accounts.1c00074

    Article  CAS  PubMed  Google Scholar 

  7. Unger, N., Bond, T.C., Wang, J.S., Koch, D.M., Menon, S., Shindell, D.T., Bauer, S.: Attribution of climate forcing to economic sectors. Proc. Natl. Acad. Sci. 107, 3382–3387 (2010). https://doi.org/10.1073/pnas.0906548107

    Article  PubMed  PubMed Central  Google Scholar 

  8. Niu, X., Bai, Y., Du, Y., Qi, H., Chen, Y.: Size controllable synthesis of ZSM-5 zeolite and its catalytic performance in the reaction of methanol conversion to aromatics. R. Soc. Open Sci. 9, 211284 (2022). https://doi.org/10.1098/rsos.211284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Puertolas, B., Navarro, M.V., Lopez, J.M., Murillo, R., Mastral, A.M., Garcia, T.: Modelling the heat and mass transfers of propane onto a ZSM-5 zeolite. Sep. Purif. Technol. 86, 127–136 (2012). https://doi.org/10.1016/j.seppur.2011.10.036

    Article  CAS  Google Scholar 

  10. Sanchez-Varretti, F.O., Bulnes, F.M., Ramirez-Pastor, A.J.: Adsorption of interacting binary mixtures on heterogeneous surfaces: theory, Monte Carlo simulations and experimental results. Adsorption 25, 1317–1328 (2019). https://doi.org/10.1007/s10450-019-00093-7

    Article  CAS  Google Scholar 

  11. Van Assche, T.R.C., Baron, G.V., Denayer, J.F.M.: An explicit multicomponent adsorption isotherm model: accounting for the size-effect for components with Langmuir adsorption behavior. Adsorption 24, 517–530 (2018). https://doi.org/10.1007/s10450-018-9962-1

    Article  CAS  Google Scholar 

  12. Wilkins, N.S., Rajendran, A.: Measurement of competitive CO2 and N2 adsorption on Zeolite 13X for post-combustion CO2 capture. Adsorption 25, 115–133 (2019). https://doi.org/10.1007/s10450-018-00004-2

    Article  CAS  Google Scholar 

  13. Santander, J.E., Conner, W.C., Jr., Jobic, H., Auerbach, S.M.: Simulating microwave-heated open systems: tuning competitive sorption in zeolites. J. Phys. Chem. B 113, 13776–13781 (2009). https://doi.org/10.1021/jp902946g

    Article  CAS  PubMed  Google Scholar 

  14. Hammond, K.D., Conner, W.C., Jr.: Analysis of Catalyst Surface Structure by Physical Sorption. In: Gates, B.C., Jentoft, F.C. (eds.) Advances in Catalysis, pp. 1–101. Elsevier, Amsterdam (2013)

    Google Scholar 

  15. Kärger, J., Ruthven, D.M., Theodorou, D.N.: Diffusion in nanoporous materials. Wiley, Hoboken (2012)

    Book  Google Scholar 

  16. Krishna, R.: Thermodynamically consistent methodology for estimation of diffusivities of mixtures of guest molecules in microporous materials. ACS Omega 4, 13520–13529 (2019). https://doi.org/10.1021/acsomega.9b01873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Leclerc, S., Petryk, M., Canet, D., Fraissard, J.: Competitive diffusion of gases in a zeolite using proton NMR and a slice selection procedure. Catal. Today 187, 104–107 (2012). https://doi.org/10.1016/j.cattod.2011.09.007

    Article  CAS  Google Scholar 

  18. Petryk, M., Leclerc, S., Canet, D., Deineka, S.I.V., V.S., Fraissard, J.: The competitive diffusion of gases in a zeolite bed: NMR and slice procedure, modelling ANMD identification of parameters. J. Phys. Chem. C ACS 119, 26519–26525 (2015). https://doi.org/10.1021/acs.jpcc.5b07974

    Article  CAS  Google Scholar 

  19. Petryk, M.R., Khimich, A., Petryk, M.M., Fraissard, J.: Experimental and computer simulation studies of dehydration on microporous adsorbent of natural gas used as motor fuel. Fuel 239, 1324–1330 (2019). https://doi.org/10.1016/j.fuel.2018.10.134

    Article  CAS  Google Scholar 

  20. Petryk, M.R., Khimich, A.N., Petryk, M.M.: Simulation of adsorption and desorption of hydrocarbons in nanoporous catalysts of neutralization systems of exhaust gases using nonlinear Langmuir isotherm. J. Autom. Inf. Sci. 50, 18–33 (2018). https://doi.org/10.1615/JAutomatInfScien.v50.i10.20

    Article  Google Scholar 

  21. Doetsch, G.: Handbuch der Laplace-Transformation: Band I: Theorie der Laplace-Transformation. Springer, Basel (1950)

    Google Scholar 

  22. Staines, J.: The Heaviside Operational Calculus: The Laplace Transform for Electrical Engineers. CreateSpace Independent Publishing Platform, Scotts Valley (2013)

    Google Scholar 

  23. Landau, L.D.: On the theory of phase transitions. I. Phys. Zeitschrift der Sowjetunion. 11, 26 (1937)

    CAS  Google Scholar 

  24. Bogoliubov, N.N., Mitropolsky, Y.A.: Asymptotic methods in the theory of non-linear oscillations. Gordon and Breach Science Publisher, Philadelphia (1961)

    Google Scholar 

Download references

Acknowledgements

The research results mentioned in this work were partly supported by Grant SSHN Campus France, 2021, funding from the Ministry of Education and Science of Ukraine, Project # DI 247-22, 0122U001859, and Projects KPKVK # 6541230, # 23BF05101.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Petryk or N. Lebovka.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1255 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petryk, M., Boyko, I., Fraissard, J. et al. Modelling of non-isothermal adsorption of gases in nanoporous adsorbent based on Langmuir equilibrium. Adsorption 29, 141–150 (2023). https://doi.org/10.1007/s10450-023-00389-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-023-00389-9

Keywords

Navigation