Skip to main content
Log in

Applying the potential theory of adsorption for adsorptive heat transformation

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Adsorptive heat transformation is an emerging technology that can store heat, convert it to heat with another temperature potential, and generate cold. Progress in this field is determined by the development of new advanced adsorbents, implementing efficient cycles, and harmonizing the adsorbent with the cycle. The article examines how the fundamental potential theory of adsorption is used to reach these applied goals and highlights the progress resulted from its application to adsorptive heat transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2.
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

3T:

Three temperature

AC:

Air-conditioning

AHT:

Adsorption Heat Transformation

DA:

Dubinin-Astakhov

DF:

Deep freezing

DR:

Dubinin-Radushkevich

HEx:

Heat exchanger

HP:

Heat pumping

IM:

Ice making

PTA:

Potential theory of adsorption

TL:

Temperature lift

TT:

Temperature thrust

TVFM:

Theory of volume filling of micropores

A :

Dubinin adsorption potential (J mol1)

a :

Fitting parameter

b :

Fitting parameter

c :

Fitting parameter

d :

Fitting parameter

E :

Characteristic energy

f :

Function

g :

Fitting parameter

k :

Fitting parameter

n :

Parameter of the surface heterogeneity

P :

Pressure, Pa

Q:

Heat of adsorption, kJ/mol

R :

Universal gas constant, J/(mol K)

s :

Entropy, kJ/(mol K)

T :

Temperature, K

V :

Volume, m3

w :

Uptake, g/g

α:

Volume expansion coefficient, m3/K

β:

Similarity (affinity) coefficient

Δ:

Increment

a:

Adsorption

c:

Condensation

d:

Desorption

e:

Evaporation

is:

Isosteric

L:

Low

H:

High

M:

Medium

Max:

Maximal

md:

Minimal desorption

min:

Minimal

o:

Saturated

r:

Rich

w:

Weak

References

  1. Alefeld, G., Radermacher, R.: Heat Conversion Systems. CRC Press, Boca Raton (1994)

    Google Scholar 

  2. Aristov, Y.I., Tokarev, M., Cacciola, G., Restuccia, G.: Selective water sorbents for multiple applications: 1. CaCl2 confined in mesopores of the silica gel: sorption properties. React. Kinet. Cat. Lett. 59, 325–334 (1996)

    Article  CAS  Google Scholar 

  3. Aristov, Y.I., Tokarev, M.M., Cacciola, G., Restuccia, G.: Selective water sorbents for multiple applications: 2. CaCl2 confined in micropores of the silica gel: sorption properties. React. Kinet. Cat. Lett. 59, 335–342 (1996)

    Article  CAS  Google Scholar 

  4. Aristov, Yu.I., Tokarev, M.M., Freni, A., Glaznev, I.S., Restuccia, G.: Kinetics of water adsorption on silica Fuji Davison RD. Microporous Mesoporous Mater. 96, 65–71 (2006)

    Article  CAS  Google Scholar 

  5. Aristov, Yu.I., Sharonov, V.E., Tokarev, M.M.: Universal relation between the boundary temperatures of a basic cycle of sorption heat machines. Chem. Engn. Sci. 63, 2907–2912 (2008)

    Article  CAS  Google Scholar 

  6. Aristov, Yu.I.: Adsorptive transformation of heat: principles of construction of adsorbents database. Applied Therm. Engn. 42, 18–24 (2012)

    Article  CAS  Google Scholar 

  7. Aristov, Yu.I.: Concept of adsorbent optimal for adsorptive cooling/heating. Appl. Therm. Engn. 72, 166–175 (2014)

    Article  Google Scholar 

  8. Aristov, Yu.I.: Adsorptive conversion of ultra-low temperature heat: Thermodynamic issues. Energy 236, 121892 (2021)

    Article  Google Scholar 

  9. Askalany, A.A., Saha, B.B., Ismail, I.M.: Adsorption isotherms and kinetics of HFC410A onto activated carbons. Appl. Therm. Eng. 72, 237–243 (2014)

    Article  CAS  Google Scholar 

  10. Bering, B.P., Serpinskii, V.: Calculation of adsorption heat and entropy using single adsorption isotherm. Dokl. Akad. Nauk SSSR 114, 1254–1257 (1957)

    CAS  Google Scholar 

  11. Bering, B.P., Dubinin, M.M., Serpinsky, V.V.: Colloid and Interface Sci. 21, 378 (1966)

    Article  CAS  Google Scholar 

  12. Cengel, Y.A., Boles, M.A.: Thermodynamics: An Engineering Approach, 4th edn. McGray-Hill Inc., New York (2002)

    Google Scholar 

  13. Chandra, I., Patwardhan, V.S.: Theoretical studies on adsorption heat transformer using zeolite-water vapour pair. Heat Recovery Syst CHP 10, 527–537 (1990)

    Article  CAS  Google Scholar 

  14. Chappuis, P.: Ueber die Wärmeerzeugung bei der Absorption der Gase durch feste Körper und Flüssigkeiten. Annalen der Physik und Chemie 19, 21–38 (1883)

    Article  Google Scholar 

  15. Critoph, R.E.: Performance limitation of adsorption cycles for solar cooling. Sol. Energy 41, 21–31 (1988)

    Article  CAS  Google Scholar 

  16. Critoph, R.E.: Solid sorption cycles: a short history. Int. J. Refrig. 35, 490–493 (2012)

    Article  CAS  Google Scholar 

  17. Dabrowski, A.: Adsorption—from theory to practice. Adv. Coll. Interface. Sci. 93, 135–224 (2001)

    Article  CAS  Google Scholar 

  18. de Saussure, T.: Beobachtungen über die Adsorption der Gasarten durch verschiedene Körper. Ann. Phys. 47, 113–183 (1814)

    Article  Google Scholar 

  19. Donnan, F.G.: The theory of membrane equilibrium in presence of a non-dialyzable electrolyte. Z. Electrochem. 17, 572 (1911)

    CAS  Google Scholar 

  20. Dubinin, M.M., Radushkevich, L.: The equation of the characteristic curve of the activated charcoal. Compt. Rend. Acad. Sci. URSS 55, 327–329 (1947)

    CAS  Google Scholar 

  21. Dubinin, M.M.: The potential theory of adsorption of gases and vapors for adsorbents with energetically non-uniform surface. Chem. Rev. 60, 235–266 (1960)

    Article  CAS  Google Scholar 

  22. Dubinin, M.M.: Adsorption in micropores. J. Colloid Interface Sci. 23, 487–499 (1967)

    Article  CAS  Google Scholar 

  23. Dubinin, M.M., Astakhov, V.A.: Description of adsorption equilibrium of vapors on zeolites over wide ranges of  temperatures and pressure. Adv. Chem. Ser. 102, 69–85 (1971)

  24. Dubinin, M.M.: Physical adsorption of gases and vapors in micropores. Progr. Surf. Membr. Sci. 9, 1–70 (1975)

    Article  CAS  Google Scholar 

  25. Dundar, E., et al.: Potential theory for prediction of high-pressure gas mixture adsorption on activated carbon and MOFs. Sep. Purif. Technol. 135, 229–242 (2014)

    Article  CAS  Google Scholar 

  26. Eucken, A.: Verh. Deutsch. Phys. Ges. 16, 345 (1914)

    Google Scholar 

  27. Favre, P.A., Silbermann, J.T.: Recherches sur les quantités de chaleur degagées dans les actions chimiques et moléculaires. Annales chimie et physique 34, 357–450 (1852)

    Google Scholar 

  28. Fomkin, A.A., Petukhova, G.A.: Features of gas, vapor, and liquid adsorption by microporous adsorbents. Russ. J. Phys. Chem. 94, 516–5251 (2020)

    Article  CAS  Google Scholar 

  29. Fontana, F., Sig, A.: Adolfo Murray Professore d'Anatomia a Upsal. Memorie di matematica e di fisica della Società Italiana delle Scienze 1, 648–706 (1782).

  30. Ghazy, M., et al.: Adsorption isotherms and kinetics of activated carbon/Difluoroethane adsorption pair: theory and experiments. Int. J. Refrig. 70, 196–205 (2016)

    Article  CAS  Google Scholar 

  31. Gibbs, J.W.: The Collected Works of J.W. Gibbs, Longmans, Green, New York (1931)

  32. Handbook of Porous Solids, eds. Schueth, F., Sing, K.S.W., and Weitkamp, J. (Willey-VCH, Weinheim, Germany). v. 1, p. 12 (2002).

  33. Girnik, I.S., Grekova, A.D., Li, T., Wang, R., Dutta, P., Murthy, S.S., Aristov, Yu.I.: Composite “LiCl/MWCNT/PVA” for advanced thermal battery: dynamics of methanol sorption. Ren. Sust. Energy Rev. 123, 109748 (2020)

    Article  CAS  Google Scholar 

  34. Girnik, I.S., Tokarev, M.M., Aristov, Yu.I.: Thermodynamic analysis of working fluids for a new “Heat from Cold” cycle. Entropy 22, 808 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gordeeva, L.G., Solovyeva, M.V., Sapienza, A., Aristov, Yu.I.: Potable water extraction from the atmosphere: potential of MOFs. Renew. Energy 148, 72–80 (2020)

    Article  CAS  Google Scholar 

  36. Gur, I., Sawyer, K., Prasher, R.: Searching for a better thermal battery. Science 335, 1454 (2012)

    Article  PubMed  Google Scholar 

  37. Jaroniec, M.: Fifty years of the theory of the volume filling of micropores. Adsorption 3, 187–198 (1997)

    Article  CAS  Google Scholar 

  38. Henninger, S.K., Schicktan, M., Huegenell, P.P.C., Sievers, H., Henning, H.M.: Evaluation of methanol adsorption on activated carbons for thermally driven chillers part I: thermophysical characterization. Int. J. Refrig. 35, 543–553 (2012)

    Article  CAS  Google Scholar 

  39. Huang, H., Li, R., Jiang, Z., Li, J., Chen, L.: Investigation of variation in shale gas adsorption capacity with burial depth: Insights from the adsorption potential theory. J. Nat. Gas Sci. Eng. 73, 103043 (2020)

    Article  CAS  Google Scholar 

  40. Hu, X., Li, R., Ming, Y., Deng, H.: Insights into shale gas adsorption and an improved method for characterizing adsorption isotherm from molecular perspectives. Chem. Engin. J. 431, 134183 (2022)

    Article  CAS  Google Scholar 

  41. Joachim, H.: Papyrus Ebers, Berlin (1890).

  42. Jribi, S., et al.: Equilibrium and kinetics of CO2 adsorption onto activated carbon. Int. J. Heat Mass Transf. 108, 1941–1946 (2017)

    Article  CAS  Google Scholar 

  43. Kehl, D.M.: Mémoire sur le charbon végétali, Observations sur la Physique, sur l'Histoire Naturelle et sur les Arts. Paris 42, 250–261 (1793).

  44. Kohler, T., Hinze, M., Müller, K., Schwieger, W.: Temperature independent description of water adsorption on zeotypes showing a type V adsorption isotherm. Energy 135, 227–236 (2017)

    Article  CAS  Google Scholar 

  45. Langmuir, I.: The constitution and fundamental properties of solids and liquids. J. Am. Chem. Soc. 38, 2221–2295 (1916)

    Article  CAS  Google Scholar 

  46. Lowitz, T.: Crell's Chem. Ann. 1, 211 (1786).

  47. Mitscherlich, M.E.: Sur les réactions chimiques produites par les corps qui n’interviennent que par leur contact. Annales de chimie et de physique 7, 15–34 (1843)

    Google Scholar 

  48. Nunez, T., Henning, H.-M., Mittelbach, W.: Adsorption cycle modelling: characterization and comparison of materials. Proc. Int. Sorption Heat Pump Conf. 209–217 (1999).

  49. Pal, A., et al.: Ethanol adsorption uptake and kinetics onto waste palm trunk and mangrove based activated carbons. Appl. Therm. Enging. 122, 389–397 (2017)

    Article  CAS  Google Scholar 

  50. Panarin, V.Y., Baum, E.A., Lanin, S.N.: History of the development of ideas about adsorption in the late 18th and 19th century. Sorbtsionnye I Khromatograficheskie Protsessy (Russ. Sorption and Chromatographic Processes) 19, 237–250 (2019) [in Russian].

  51. Polanyi, M.: Verh. Dtsch. Phys. Ges. 16, 1012–1016 (1914)

    CAS  Google Scholar 

  52. Polanyi, M.: Section III—Theories of the adsorption of gases. A general survey and some additional remarks. Introductory paper to section III. Trans. Faraday Soc. 28, 316–333 (1932).

  53. Pons, M., Meunier, F., Cacciola, G., Critoph, R., Groll, M., Puigjaner, L., Spinner, B., Ziegler, F.: Thermodynamic based comparison of sorption systems for cooling and heat pumping. Int. J. Refrig. 22, 5–17 (1999)

    Article  CAS  Google Scholar 

  54. Prokopiev, S.I., Aristov, Yu.I.: Concentrated aqueous electrolyte solutions: analytical equations for humidity—concentration dependence. J. Solut. Chem. 29, 633–649 (2000)

    Article  CAS  Google Scholar 

  55. Rattner, A.S., Garimella, S.: Energy harvesting, reuse and upgrade to reduce primary energy usage in the USA. Energy 36, 6172 (2011)

    Article  Google Scholar 

  56. Robens, E., Jayaweera, S.A.A.: Early history of adsorption measurements. Ads. Sci. Techn. 32, 425–442 (2014)

    Article  CAS  Google Scholar 

  57. Rupa, M.J., Pal, A., Saha, B.: Activated carbon-graphene nanoplatelets based green cooling system: adsorption kinetics, heat of adsorption, and thermodynamic performance. Energy 193, 116774 (2020)

    Article  CAS  Google Scholar 

  58. Saha, B., Chakraborty, A., Koyama, S., Srinivasan, K., Ng, K., Kashiwagi, T., Dutta, P.: Thermodynamic formalism of minimum heat source temperature for driving advanced adsorption cooling device. Appl. Phys. Lett. 91, 111902 (2007)

    Article  Google Scholar 

  59. Scheele, C.W.: Chemische Abhandlung von der Luft und dem Feuer; Chemische Abhandlung von der Luft und dem Feuer. Crusius, Leipzig (1777) (see: Ostwald's Klassiker exakten Wiss. 58 (1894)).

  60. Simonova, I.A., Freni, A., Restuccia, G., Aristov, Yu.I.: Water sorption on the composite «silica modified by calcium nitrate»: sorption equilibrium. Micropor. Mesopor. Mater. 122, 223–228 (2009)

    Article  CAS  Google Scholar 

  61. Srinivasan, K., Saha, B., Ng, K.C., Dutta, P., Prasad, M.: A method for the calculation of the adsorbed phase volume and pseudo-saturation pressure from adsorption isotherm data on activated carbon. Phys. Chem. Chem. Phys. 13, 12559–12570 (2011)

    Article  CAS  PubMed  Google Scholar 

  62. Srinivasan, K., Dutta, P., Ng, K.C., Saha, B.: Calculation of heat of adsorption of gases and refrigerants on activated carbons from direct measurements fitted to the Dubinin–Astakhov equation. Adsorpt. Sci. Technol. 30, 549–565 (2012)

    Article  CAS  Google Scholar 

  63. Stach, H., Mugele, J., Jaenchen, J., Weiler, E.: Influence of cycle temperatures on the thermochemical heat storage densities in the systems water/microporous and water/ mesoporous adsorbents. Adsorption 11, 393–405 (2005)

    Article  CAS  Google Scholar 

  64. Tamainot-Telto, Z., Metcalf, S.J., Critoph, R.E., Zhong, Y., Thorpe, R.: Carbon–ammonia pairs for adsorption refrigeration applications: ice making, air conditioning and heat pumping. Int. J. Refrig. 32, 1212–1229 (2009)

    Article  CAS  Google Scholar 

  65. Tamainot-Telto, Z.: Novel method using Dubinin-Astakhov theory in sorption reactor design for refrigeration and heat pump applications. Appl. Therm. Enging. 107, 1123–1129 (2016)

    Article  CAS  Google Scholar 

  66. Teicht, C.: An easy-to-use modification of the potential theory of adsorption and creation of an adsorbent data base. Energy 263, 125968 (2023)

    Article  Google Scholar 

  67. Tokarev, M.M., Okunev, B., Safonov, M., Heifets, L., Aristov, Yu.I.: Approximation equations for describing the sorption equilibrium between water vapor and a CaCl2-in-silica gel composite sorbent. Rus. J. Phys. Chem. 79, 1490–1493 (2005)

    CAS  Google Scholar 

  68. Trouton, F.: On molecular latent heat. Philos. Mag. 18, 54–57 (1884)

    Article  Google Scholar 

  69. Tsivadze, A., et al.: Metal-organic framework structures: Adsorbents for natural gas storage. Russ. Chem. Reviews. 88, 925–978 (2019)

    Article  CAS  Google Scholar 

  70. Wang, R., Wang, L., Wu, J.: Adsorption Refrigeration Technology: Theory and Application. Wiley, Singapore (2014)

    Book  Google Scholar 

  71. Zhong, Y., Critoph, R., Thorpe, R.: Evaluation of the performance of solid sorption refrigeration systems using carbon dioxide as refrigerant. Appl. Therm. Enging. 26, 1807–1811 (2006)

    Article  CAS  Google Scholar 

  72. Ziegler, F.: Recent developments and future prospects of sorption heat pump systems. Int. J. Thermal Sci. 38, 191–208 (1999)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Higher Education of the Russian Federation within the governmental order for Boreskov Institute of Catalysis (project AAAA-A21-121011390006-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. I. Aristov.

Ethics declarations

Conflict of interest

I certify that there is no actual or potential conflict of interest in relation to this article.

Additional information

Dedicated to the 120th anniversary of the birth of M.M. Dubinin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aristov, Y. Applying the potential theory of adsorption for adsorptive heat transformation. Adsorption 29, 225–235 (2023). https://doi.org/10.1007/s10450-023-00385-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-023-00385-z

Keywords

Navigation