Skip to main content
Log in

Activated carbon characterization with heterogenous kernel using CO2 at high pressure

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

We investigated the pore size distribution obtained from adsorption isotherms kernels of CO2 at 298 K on homogeneous and heterogeneous slit activated carbon models. The heterogenous activated carbon surface was created using the reactive molecular dynamics model (rMD) which explicitly incorporates heterogeneities resulting from the oxidative etching of graphene walls. PSDs obtained with homogeneous and rMD models have been compared for different activated carbons. The rMD model resulted in an improved fit to the experimental isotherm, compared to homogenous model. The pore size distribution obtained from CO2 isotherm with rMD model systematically predicts a greater volume of ultramicropores in all activated carbons studied. Both PSDs are able to predict C1 to C4 light hydrocarbon isotherms with the rMD kernel being more accurate than the homogeneous one. The rMD model considerably reduces the discrepancies between atom-atom (AA) and unit atom (UA) molecular models of CO2. The study brings evidences that CO2 at high pressures can be used to simultaneously measure the interval between ultramicropores and mesopores. Moreover, the differences between AA and UA CO2 model in rMD heterogenous ultra-micropores, limits the application of implicit heterogenous DFT-based kernel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ravikovitch, P.I., Vishnyakov, A., Russo, R., Neimark, A.V.: Unified Approach to pore size characterization of Microporous Carbonaceous materials from N2, Ar, and CO2 Adsorption Isotherms. Langmuir. 16, 2311–2320 (2000). https://doi.org/10.1021/la991011c

    Article  CAS  Google Scholar 

  2. Do, D.D., Do, H.D.: Effects of potential models on the adsorption of carbon dioxide on graphitized thermal carbon black: GCMC computer simulations. Colloids Surf. Physicochem Eng Asp. 277, 239–248 (2006). https://doi.org/10.1016/j.colsurfa.2005.11.094

    Article  CAS  Google Scholar 

  3. Lucena, S.M.P., Gonçalves, R.V., Silvino, P.F.G., Gonçalves, D.V., Oliveira, J.C.A.: Fingerprints of heterogeneities from carbon oxidative process: a reactive molecular dynamics study. Microporous Mesoporous Mater. 304, 109061 (2020). https://doi.org/10.1016/j.micromeso.2018.07.051

    Article  CAS  Google Scholar 

  4. Lucena, S.M.P., Oliveira, J.C.A., Gonçalves, D.V., Silvino, P.F.G., Dantas, S., Neimark, A.V.: Pore size analysis of carbons with heterogeneous kernels from reactive molecular dynamics model and quenched solid density functional theory. Carbon N. Y. 183, 672–684 (2021). https://doi.org/10.1016/j.carbon.2021.07.059

    Article  CAS  Google Scholar 

  5. Jagiello, J., Ania, C., Parra, J.B., Cook, C.: Dual gas analysis of microporous carbons using 2D-NLDFT heterogeneous surface model and combined adsorption data of N2 and CO2. Carbon N. Y. 91, 330–337 (2015). https://doi.org/10.1016/j.carbon.2015.05.004

    Article  CAS  Google Scholar 

  6. Gusev, V.Y., O’Brien, J., Seaton, N.A., Brien, J.A.O.: A self-consistent method for characterization of activated carbons using supercritical adsorption and Grand Canonical Monte Carlo Simulations. Langmuir. 13, 2815–2821 (1997). https://doi.org/10.1021/la960421n

    Article  CAS  Google Scholar 

  7. Do, D.D.D., Junpirom, S., Nicholson, D., Do, H.D.D.: Importance of molecular shape in the adsorption of nitrogen, carbon dioxide and methane on surfaces and in confined spaces. Colloids Surf. Physicochem Eng Asp. 353, 10–29 (2010). https://doi.org/10.1016/j.colsurfa.2009.10.021

    Article  CAS  Google Scholar 

  8. Dubbeldam, D., Calero, S., Ellis, D.E., Snurr, R.Q.: RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials. Mol. Simul. 42, 81–101 (2016). https://doi.org/10.1080/08927022.2015.1010082

    Article  CAS  Google Scholar 

  9. Lucena, S.M.P., Snurr, R.Q., Cavalcante, C.L.: Studies on adsorption equilibrium of xylenes in AEL framework using biased GCMC and energy minimization. Microporous Mesoporous Mater. 111, 89–96 (2008). https://doi.org/10.1016/j.micromeso.2007.07.021

    Article  CAS  Google Scholar 

  10. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.W.: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87, 1051–1069 (2015)

  11. Potoff, J.J., Siepmann, J.I.: Vapor–liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen. AIChE J. 47, 1676–1682 (2001). https://doi.org/10.1002/aic.690470719

    Article  CAS  Google Scholar 

  12. Dantas, S., Struckhoff, K.C., Thommes, M., Neimark, A.V.: Pore size characterization of micro-mesoporous carbons using CO2 adsorption. Carbon N. Y. 173, 842–848 (2021). https://doi.org/10.1016/j.carbon.2020.11.059

    Article  CAS  Google Scholar 

  13. Gonçalves, D.V., Paiva, M.A.G., Oliveira, J.C.A., Bastos-Neto, M., Lucena, S.M.P.: Prediction of the monocomponent adsorption of H2S and mixtures with CO2 and CH4 on activated carbons. Colloids Surf. Physicochem Eng Asp. 559, 342–350 (2018). https://doi.org/10.1016/j.colsurfa.2018.09.082

    Article  CAS  Google Scholar 

  14. Soares Maia, D.A., Alexandre de Oliveira, J.C., Nazzarro, M.S., Sapag, K.M., López, R.H., de Lucena, S.M.P., de Azevedo, D.C.S: CO 2 gas-adsorption calorimetry applied to the study of chemically activated carbons. Chem. Eng. Res. Des. 136, 753–760 (2018). https://doi.org/10.1016/j.cherd.2018.06.034

    Article  CAS  Google Scholar 

  15. Steele, W.A.: The interaction of rare gas atoms with graphitized carbon black. J. Phys. Chem. 82, 817–821 (1978). https://doi.org/10.1021/j100496a011

    Article  CAS  Google Scholar 

  16. Merz, P.H.: Determination of adsorption energy distribution by regularization and a characterization of certain adsorption isotherms. J. Comput. Phys. 38, 64–85 (1980). https://doi.org/10.1016/0021-9991(80)90012-1

    Article  CAS  Google Scholar 

  17. Szombathely, M.V., Bräuer, P., Jaroniec, M.: The solution of adsorption integral equations by means of the regularization method. J. Comput. Chem. 13, 17–32 (1992). https://doi.org/10.1002/jcc.540130104

    Article  Google Scholar 

  18. Davies, G.M., Seaton, N.: Development and validation of pore structure models for activated carbons. Langmuir. 15, 6263 (1999). https://doi.org/10.1021/la990160s

    Article  CAS  Google Scholar 

  19. Davies, G.M., Seaton, N.A.: The effect of the choice of pore model on the characterization of the internal structure of microporous carbons using pore size distributions. Carbon N. Y. 36, 1473–1490 https://doi.org/S0008-6223(98)00140-7 (1998)

  20. Hansen, P.C.: Regularization Tools: A Matlab package for analysis and solution of discrete ill-posed problems.Numer. Algorithms.6, (1994)

  21. Lucena, S.M.P., Gomes, V., Gonçalves, D.V., Mileo, P.G.M., Silvino, P.F.G.: Molecular simulation of the accumulation of alkanes from natural gas in carbonaceous materials. Carbon N. Y. 61, 624–632 (2013). https://doi.org/10.1016/j.carbon.2013.05.046

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors wish to acknowledge financial support for this study from CAPES, CNPq and FUNCAP and the use of the computer cluster at National Laboratory of Scientific Computing (LNCC/MCTI, Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastião Mardônio Pereira de Lucena.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, J.C.A., Gonçalves, D.V., Silvino, P.F. et al. Activated carbon characterization with heterogenous kernel using CO2 at high pressure. Adsorption 29, 209–216 (2023). https://doi.org/10.1007/s10450-023-00375-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-023-00375-1

Keywords

Navigation