Skip to main content
Log in

An evaluation on S-type adsorption isotherm in the model of crosslinked polyhydroxamates/oxazine dyes/water interactions

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

The effects of crosslinker and dye type on swelling and S-type adsorption properties of crosslinked polyhydroxamates (CHP) were investigated. CHPs containing N,Nʹ-methylenebisacrylamide (N), or ethylene glycol dimethacrylate (E) were used in the swelling, diffusion, and adsorption experiments in solutions of oxazine dyes such as Brilliant Cresyl Blue, Nile Blue, and Cresyl Violet. Swelling and diffusion parameters of CHPs in dye solutions (such as equilibrium swelling, half time of swelling, swelling value at half time, network parameter, diffusion exponent, and diffusion constant) were calculated. It is understood from the time of swelling to reach equilibrium that CHPs swell very fast. CHP-E in all dyes solutions swelled considerably more than CHP-N. Dye solution diffusion into CHPs was determined to be of non-Fickian character. It has been observed that the swelling properties of hydrogels are highly influenced by the crosslinker type. The adsorption of oxazine dyes onto CHPs is similar to the S-type adsorption in the Giles classification system. When it was seen that the experimental data fit the Sigmoidal 4 parameter equation with a high correlation (r2 > 0.995), the use of this equation determined the adsorption parameters such as the highest bonding rate or monolayer coverage, the transition point of the isotherm, the magnitude of the absorbent's absorbability and the slope parameter. Site-size, maximum fractional occupancy, the binding ratio at the transition point, binding constant, the initial binding constant, partition coefficient, and adsorption free energy values were also calculated by using the found adsorption values. Dye adsorption from all dyes solutions to CHP-E is considerably higher than CHP-N. An increasing linear relationship was found between swelling and adsorption. In conclusion, the sigmoidal equation approach can be a useful tool for chemists, chemical, agricultural and environmental engineers, polymer scientists to find the adsorption parameters of polymer adsorbents, and at the same time, it can be said that CHP can be used as a good sorbent in the removal of some chemical agents (such as dye molecules, organic molecules, biologically active molecules).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Katheresan, V., Kansedo, J., Lau, S.Y.: Efficiency of various recent wastewater dye removal methods: a review. J. Environ. Chem. Eng. 6(4), 4676–4697 (2018). https://doi.org/10.1016/j.jece.2018.06.060

    Article  CAS  Google Scholar 

  2. Işikver, Y.: Removal of some cationic dyes from aqueous solution by acrylamide- or 2-hydroxyethyl methacrylate-based copolymeric hydrogels. Fibers Polym. 18(11), 2070–2078 (2017). https://doi.org/10.1007/s12221-017-7215-7

    Article  CAS  Google Scholar 

  3. Zhang, Q.-F., Jiang, Z.-T., Guo, Y.-X., Li, R.: Complexation study of brilliant cresyl blue with β-cyclodextrin and its derivatives by UV–vis and fluorospectrometry. Spectrochim. Acta A Mol. Biomol. Spectrosc. 69(1), 65–70 (2008). https://doi.org/10.1016/j.saa.2007.03.009

    Article  CAS  PubMed  Google Scholar 

  4. Gilani, A.G., Shokri, S.: Spectral and aggregative properties of two oxazine dyes in aqueous solutions containing structure-breaking and multifunctional additives. J. Mol. Liq. 193, 194–203 (2014). https://doi.org/10.1016/j.molliq.2013.12.020

    Article  CAS  Google Scholar 

  5. Zheng, H., Chen, X.-L., Zhu, C.-Q., Li, D.-H., Chen, Q.-Y., Xu, J.-G.: Brilliant cresyl blue as a new red region fluorescent probe for determination of nucleic acids. Microchem. J. 64(3), 263–269 (2000). https://doi.org/10.1016/s0026-265x(00)00015-1

    Article  CAS  Google Scholar 

  6. Sabnis, R.W.: Handbook of Biological Dyes and Stains Synthesis and Industrial Applications, pp. 334–335. Wiley, Hoboken (2010)

    Book  Google Scholar 

  7. Zhou, Y., Lu, J., Zhou, Y., Liu, Y.: Recent advances for dyes removal using novel adsorbents: a review. Environ. Pollut. 252, 352–365 (2019). https://doi.org/10.1016/j.envpol.2019.05.072

    Article  CAS  PubMed  Google Scholar 

  8. Pereira, A.G.B., Rodrigues, F.H.A., Paulino, A.T., Martins, A.F., Fajardo, A.R.: Recent advances on composite hydrogels designed for the remediation of dye-contaminated water and wastewater: a review. J. Clean. Prod. 284, 124703 (2021). https://doi.org/10.1016/j.jclepro.2020.124703

    Article  CAS  Google Scholar 

  9. Abebe, B., Murthy, H.C.A., Amare, E.: Summary on adsorption and photocatalysis for pollutant remediation: mini review. JEAS 08(04), 225–255 (2018). https://doi.org/10.4236/jeas.2018.84012

    Article  CAS  Google Scholar 

  10. Saraydın, D., Karadağ, E., Güven, O.: adsorption of some basic dyes by acrylamide-maleic acid hydrogels. Sep. Sci. Technol. 31(3), 423–434 (1996). https://doi.org/10.1080/01496399608000705

    Article  Google Scholar 

  11. Raval, N.P., Shah, P.U., Shah, N.K.: Malachite green “a cationic dye” and its removal from aqueous solution by adsorption. Appl. Water. Sci. 7(7), 3407–3445 (2016). https://doi.org/10.1007/s13201-016-0512-2

    Article  CAS  Google Scholar 

  12. Ekici, S., Işıkver, Y., Saraydın, D.: Poly(acrylamide-sepiolite) composite hydrogels: preparation, swelling and dye adsorption properties. Polym. Bull. 57(2), 231–241 (2006). https://doi.org/10.1007/s00289-006-0552-0

    Article  CAS  Google Scholar 

  13. Zhang, Y., Zhao, M., Cheng, Q., Wang, C., Li, H., Han, X., Li, Z.: Research progress of adsorption and removal of heavy metals by chitosan and its derivatives: a review. Chemosphere 279, 130927 (2021). https://doi.org/10.1016/j.chemosphere.2021.130927

    Article  CAS  PubMed  Google Scholar 

  14. Johann, T., Keth, J., Bros, M., Frey, H.: A general concept for the introduction of hydroxamic acids into polymers. Chem. Sci. 10(29), 7009–7022 (2019). https://doi.org/10.1039/c9sc02557j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Arun, Y., Daifa, M., Domb, A.J.: Polyhydroxamic acid as an efficient metal chelator and flocculant for wastewater treatment. Polym. Adv. Technol. 32(2), 842–852 (2020). https://doi.org/10.1002/pat.5135

    Article  CAS  Google Scholar 

  16. Sockwell, A.K., Wetzler, M.: Beyond biological chelation: coordination of f-block elements by polyhydroxamate ligands. Chem. Eur. J. 25(10), 2380–2388 (2018). https://doi.org/10.1002/chem.201803176

    Article  CAS  PubMed  Google Scholar 

  17. Shaikh, S.H., Kumar, S.A.: Polyhydroxamic acid functionalized sorbent for effective removal of chromium from ground water and chromic acid cleaning bath. Chem. Eng. J. 326, 318–328 (2017). https://doi.org/10.1016/j.cej.2017.05.151

    Article  CAS  Google Scholar 

  18. Mhemeed, A.H.: A general overview on the adsorption. IJONS 9(15), 16127–16131 (2018)

    Google Scholar 

  19. Al-Ghouti, M.A., Daana, D.A.: Guidelines for the use and interpretation of adsorption isotherm models: a review. J. Hazard. Mater. 393, 122383 (2020). https://doi.org/10.1016/j.jhazmat.2020.122383

    Article  CAS  PubMed  Google Scholar 

  20. Rahman, M.M., Muttakin, M., Pal, A., Shafiullah, A.Z., Saha, B.B.: A statistical approach to determine optimal models for IUPAC-classified adsorption isotherms. Energies 12(23), 4565 (2019). https://doi.org/10.3390/en12234565

    Article  CAS  Google Scholar 

  21. Giles, C.H., Smith, D., Huitson, A.: A general treatment and classification of the solute adsorption isotherm I. Theoretical. J. Colloid Interface Sci. 47(3), 755–765 (1974). https://doi.org/10.1016/0021-9797(74)90252-5

    Article  CAS  Google Scholar 

  22. Hinz, C.: Description of sorption data with isotherm equations. Geoderma 99(3–4), 225–243 (2001). https://doi.org/10.1016/s0016-7061(00)00071-9

    Article  CAS  Google Scholar 

  23. Chen, C.: Evaluation of equilibrium sorption isotherm equations. Open Chem. Eng. J. 7(1), 24–44 (2013). https://doi.org/10.2174/1874123101307010024

    Article  Google Scholar 

  24. Ayawei, N., Ebelegi, A.N., Wankasi, D.: Modelling and interpretation of adsorption isotherms. J. Chem. 2017, 1–11 (2017). https://doi.org/10.1155/2017/3039817

    Article  CAS  Google Scholar 

  25. Buttersack, C.: Modeling of type IV and V sigmoidal adsorption isotherms. Phys. Chem. Chem. Phys. 21(10), 5614–5626 (2019). https://doi.org/10.1039/c8cp07751g

    Article  CAS  PubMed  Google Scholar 

  26. Foo, K.Y., Hameed, B.H.: Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 156(1), 2–10 (2010). https://doi.org/10.1016/j.cej.2009.09.013

    Article  CAS  Google Scholar 

  27. WOS: https://www.webofscience.com/wos/woscc/summary/599ba880-62b4-47f2-a106-6a6ef00138a3-028e3348/relevance/1

  28. Saraydın, D., Karadağ, E., Güven, O.: Super water-retainer hydrogels: crosslinked acrylamide/succinic acid copolymers. Polym. J. 29(8), 631–636 (1997). https://doi.org/10.1295/polymj.29.631

    Article  Google Scholar 

  29. Karadağ, E., Üzüm, Ö.B., Saraydın, D., Güven, O.: Swelling characterization of gamma-radiation induced crosslinked acrylamide/maleic acid hydrogels in urea solutions. Mater. Des. 27(7), 576–584 (2006). https://doi.org/10.1016/j.matdes.2004.11.019

    Article  CAS  Google Scholar 

  30. Işikver, Y., Saraydın, D.: Environmentally sensitive hydrogels: N-isopropyl acrylamide/acrylamide/ mono-, di-, tricarboxylic acid crosslinked polymers. Polym. Eng. Sci. 55(4), 843–851 (2014). https://doi.org/10.1002/pen.23950

    Article  CAS  Google Scholar 

  31. Saraydın, D., Yıldırım, E.Ş, Karadağ, E., Güven, O.: Radiation-synthesized acrylamide/crotonic acid hydrogels for selective mercury (II) ion adsorption. Adv. Polym. Technol. 37(3), 822–829 (2016). https://doi.org/10.1002/adv.21725

    Article  CAS  Google Scholar 

  32. Chakraborty, A., Adhikari, R., Saha, S.K.: Molecular interaction of oxazine dyes in aqueous solution: temperature dependent molecular disposition of the aggregates. J Mol. Liq. 164(3), 250–256 (2011). https://doi.org/10.1016/j.molliq.2011.09.022

    Article  CAS  Google Scholar 

  33. Kjær, C., Nielsen, S.B.: Luminescence spectroscopy of oxazine dye cations isolated in vacuo. Phys. Chem. Chem. Phys. 21(8), 4600–4605 (2019). https://doi.org/10.1039/c8cp07340f

    Article  CAS  PubMed  Google Scholar 

  34. Işıkver, Y., Saraydın, D., Şahiner, N.: Poly(hydroxamic acid) hydrogels from poly(acrylamide): preparation and characterization. Polym. Bull. 47(1), 71–79 (2001). https://doi.org/10.1007/s002890170023

    Article  Google Scholar 

  35. Saraydin, D., Işıkver, Y., Şahiner, N.: Uranyl ion binding properties of poly(hydroxamic acid) hydrogels. Polym. Bull. 47(1), 81–89 (2001). https://doi.org/10.1007/s002890170024

    Article  CAS  Google Scholar 

  36. Karadağ, E., Saraydin, D., Işıkver, Y.Ç.: Swelling characterization of polyelectrolyte poly(hydroxamic acid) hydrogels in aqueous thiazin dye solutions. Polym. Plast. Technol. Eng. 45(6), 729–734 (2006). https://doi.org/10.1080/03602550600611230

    Article  CAS  Google Scholar 

  37. Saraydın, D., Işıkver, Y., Karadağ, E.: Adsorption of phenazine dyes using poly(hydroxamic acid) hydrogels from aqueous solutions. Polym. Eng. Sci. 58(3), 310–318 (2017). https://doi.org/10.1002/pen.24574

    Article  CAS  Google Scholar 

  38. Saraydın, D., Işıkver, Y., Karadağ, E.: A study on the correlation between adsorption and swelling for poly(hydroxamic acid) hydrogels-triarylmethane dyes systems. J. Polym. Environ. 26(9), 3924–3936 (2018). https://doi.org/10.1007/s10924-018-1257-9

    Article  CAS  Google Scholar 

  39. Marković, D.D., Lekić, B.M., Rajaković-Ognjanović, V.N., Onjia, A.E., Rajaković, L.V.: A new approach in regression analysis for modeling adsorption isotherms. Sci. World J. 2014, 1–17 (2014). https://doi.org/10.1155/2014/930879

    Article  Google Scholar 

  40. Georgieva, N., Yaneva, Z., Dermendzhieva, D.: Sorption equilibrium, thermodynamics and pH-indicator properties of cresyl violet dye/bentonite composite system. Water Sci. Technol. 76(5), 1065–1080 (2017). https://doi.org/10.2166/wst.2017.283

    Article  CAS  PubMed  Google Scholar 

  41. Salomi, B.S.B.: Spectroscopic and electrochemical studies on redox dyes. In: Covalently bound redoxdynes as potential electron mediators in hydrogen peroxide and glucose biosensors, Ph. D. Thesis, University of Hyderabad, India, pp. 32–59 (2006)

  42. Saraydın, D., Karadağ, E., Çaldıran, Y., Güven, O.: Nicotine-selective radiation-induced poly(acrylamide/maleic acid) hydrogels. Radiat. Phys. Chem. 60(3), 203–210 (2001). https://doi.org/10.1016/s0969-806x(00)00342-x

    Article  Google Scholar 

  43. Fleming, S., Mills, A., Tuttle, T.: Predicting the UV–vis spectra of oxazine dyes. Beilstein J. Org. Chem. 7, 432–441 (2011). https://doi.org/10.3762/bjoc.7.56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yariv, S.: Staining of clay minerals and visible absorption spectroscopy of dye-clay complexes. In: Yariv, S., Cross, H. (eds.) Organo–Clay Complexes and Interactions. Marcel Dekker, New York (2002)

    Google Scholar 

  45. Dmello, A.X., Sylvester, T.V., Ramya, V., Britto, F.P., Shetty, P.K.: Metachromasia and metachromatic dyes: a review. Int. J. Adv. Health Sci. 2(10), 12–17 (2016)

    Google Scholar 

  46. Ledvij, M.: Curve fitting made easy. Ind. Phys. 9(2), 24–27 (2003)

    Google Scholar 

  47. Harris, R., Hess, D.R., Venegas, J.G.: An objective analysis of the pressure-volume curve in the acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 161(2), 432–439 (2000). https://doi.org/10.1164/ajrccm.161.2.9901061

    Article  CAS  PubMed  Google Scholar 

  48. Karadağ, E., Saraydin, D., Guven, O.: Interaction of some cationic dyes with acrylamide/itaconic acid hydrogels. J. Appl. Polym. Sci. 61(13), 2367–2372 (1996). https://doi.org/10.1002/(sici)1097-4628(19960926)61:13%3c2367::aid-app16%3e3.0.co;2-1

    Article  Google Scholar 

  49. Tran, H.N., You, S.-J., Hosseini-Bandegharaei, A., Chao, H.-P.: Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: a critical review. Water Res. 120, 88–116 (2017). https://doi.org/10.1016/j.watres.2017.04.014

    Article  CAS  PubMed  Google Scholar 

  50. Liu, Y.: Is the free energy change of adsorption correctly calculated? J. Chem. Eng. Data 54(7), 1981–1985 (2009). https://doi.org/10.1021/je800661q

    Article  CAS  Google Scholar 

Download references

Funding

This research was funded by the Scientific Research Project Fund of Sivas Cumhuriyet University, grant number F-037.

Author information

Authors and Affiliations

Authors

Contributions

DS: Conceptualization, methodology, software, formal analysis, investigation, resources, data curation, writing—original draft preparation, writing—review and editing, visualization, supervision, project administration, funding acquisition, YI: Conceptualization, methodology, software, formal analysis, investigation, resources, data curation, writing—original draft preparation, writing—review and editing, visualization, EK: Conceptualization, methodology, formal analysis, investigation, resources. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Dursun Saraydın.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saraydın, D., Işıkver, Y. & Karadağ, E. An evaluation on S-type adsorption isotherm in the model of crosslinked polyhydroxamates/oxazine dyes/water interactions. Adsorption 28, 249–260 (2022). https://doi.org/10.1007/s10450-022-00367-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-022-00367-7

Keywords

Navigation