Skip to main content

Advertisement

Log in

Insights into CO2 adsorption in amino-functionalized SBA-15 synthesized at different aging temperature

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Mesoporous silica SBA-15 solids have been synthesized at different aging temperature with the goal of obtaining materials with different textural properties. The synthesized samples have been evaluated for their CO2 adsorption capacity. In order to increase the CO2 adsorption capacity and the CO2/N2 selectivity, the SBA-15 synthesized at different aging temperatures were functionalized via grafting with 3-aminopropyltriethoxysilane (APTES) and via impregnation with polyethyleniminethylenediamine branched (PEI) or tetraethylenepentamine (TEPA). In all cases, the adsorption isotherms of the amine functionalized silica are fitted to the Dualsite-Langmuir model, where physical and chemical adsorption sites are reported. The isotherms reveal that grafted-silicas with APTES displayed the coexistence of both adsorption sites, while the adsorption process of PEI or TEPA impregnated-silicas are mainly governed by chemical interactions. The adsorption isotherms show that the most promising adsorbent for CO2 capture in terms of CO2 adsorption capacity and CO2/N2 selectivity is the SBA synthesized at 393 K (aging temperature) and functionalized with TEPA (50 wt%) (SBA-393-50T). This sample reached a CO2 adsorption capacity of 2.83 mmol g−1 at 100 kPa and 338 K. The CO2 adsorption capacity of this material decreased around 5% after the first adsorption/desorption cycle, maintaining a constant value for successive cycles. SBA-393-50T also showed an outstanding CO2/N2 selectivity, increasing significantly as the CO2 concentration decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Brunauer, S., Emmett, P.H., Teller, E.: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309–319 (1938)

    CAS  Google Scholar 

  • Brunetti, A., Scura, F., Barbieri, G., Drioli, E.: Membrane technologies for CO2 separation. J. Membr. Sci. 359, 115–125 (2010)

    CAS  Google Scholar 

  • Cecilia, J.A., Vilarrasa-García, E., Cavalcante Jr., C.L., Azevedo, D.C.S., Franco, F., Rodríguez-Castellón, E.: Evaluation of two fibrous clay minerals (sepiolite and palygorskite) for CO2 capture. J. Environ. Chem. Eng. 6, 4573–4587 (2018)

    CAS  Google Scholar 

  • Cecilia, J.A., Vilarrasa-García, E., García-Sancho, C., Saboya, R.M.A., Azevedo, D.C.S., Cavalcante Jr., C.L., Rodríguez-Castellón, E.: Functionalization of hollow silica microspheres by impregnation or grafted of amine groups for the CO2 capture. Int. J. Greenh. Gas Control 52, 344–356 (2016)

    CAS  Google Scholar 

  • Chen, C., Son, W.J., You, K.S., Ahn, J.W., Ahn, W.S.: Carbon dioxide capture using amine-impregnated HMS having textural mesoporosity. Chem. Eng. J. 161, 46–52 (2010)

    CAS  Google Scholar 

  • Charalambous, C., Santori, G., Vilarrasa-Garcia, E., Bastos-Neto, M., Cavalcante Jr., C.L., Brandani, S.: Pure and binary adsorption of carbon dioxide and nitrogen on AQSOA FAM Z02. J. Chem. Eng. Data 63, 661–670 (2018)

    CAS  Google Scholar 

  • de Boer, J.H., Lippens, B.C., Linsen, B.G., Broekhoff, J.C.P., van den Heuvel, A., Osinga, T.J.: The t-curve of multimolecular N2-adsorption. J. Colloid Interface Sci. 21, 405–414 (1966)

    Google Scholar 

  • Dey, R., Gupta, R., Samanta, A.: Carbon dioxide capture under postcombustion conditions using amine-functionalized SBA-15: kinetics and multicyclic performance. Sep. Sci. Technol. 53(16), 2683–2694 (2018)

    CAS  Google Scholar 

  • Didas, S.A., Sakwa-Novak, M.A., Foo, G.S., Sievers, C., Jones, C.W.: Effect of amine surface coverage on the co-adsorption of CO2 and water: spectral deconvolution of adsorbed species. J. Phys. Chem. Lett. 5, 4194–4200 (2014)

    CAS  PubMed  Google Scholar 

  • Do, D.D.: Adsorption Analysis: Equilibria and Kinetics. Imperial College Press, London (1998)

    Google Scholar 

  • Drage, T.C., Blackman, J.M., Pevida, C., Snape, C.E.: Evaluation of activated carbon adsorbents for CO2 capture in gasification. Energy Fuels 23, 2790–2796 (2009)

    CAS  Google Scholar 

  • Dreisbach, F., Lösch, H.W., Harting, P.: Highest pressure adsorption equilibria data: measurement with magnetic suspension balance and analysis with a new adsorbent/adsorbate-volume. Adsorption 8(2), 95–109 (2002a)

    CAS  Google Scholar 

  • Dreisbach, F., Reza Seif, A.H., Lösch, H.W.: Gravimetric measurement of adsorption equilibria of gas mixture CO2/H2 with a magnetic suspension balance. Chem. Eng. Technol. 25(11), 1060–1065 (2002b)

    CAS  Google Scholar 

  • Feng, X., Hu, G., Hu, X., Xie, G., Xie, Y., Lu, J., Luo, M.: Tetraethylenepentamine-modified siliceous mesocellular foam (MCF) for CO2 capture. Ind. Eng. Chem. Res. 52, 4221–4228 (2013)

    CAS  Google Scholar 

  • Fulvio, P.F., Pikus, S., Jaroniec, M.: Tailoring properties of SBA-15 materials by controlling conditions of hydrothermal synthesis. J. Mater. Chem. 15, 5049–5053 (2005)

    CAS  Google Scholar 

  • Galarneau, A., Cambon, H., Di Renzo, F., Fajula, F.: True microporosity and surface area of mesoporous SBA-15 silicas as a function of synthesis temperature. Langmuir 17, 8328–8335 (2001)

    CAS  Google Scholar 

  • Gao, W., Zhou, T., Wang, Q.: Controlled synthesis of MgO with diverse basic sites and its CO2 capture mechanism under different adsorption conditions. Chem. Eng. J. 336, 710–720 (2018)

    CAS  Google Scholar 

  • García, S., Gil, M.V., Martín, C.F., Pis, J.J., Rubiera, F., Pevida, C.: Breakthrough adsorption study of a commercial activated carbon for pre-combustion CO2 capture. Chem. Eng. J. 171, 549–556 (2011)

    Google Scholar 

  • Guo, X., Ding, L., Kanamori, K., Nakanishi, K., Yang, H.: Functionalization of hierarchically porous silica monoliths with polyethyleneimine (PEI) for CO2 adsorption. Microporous Mesoporous Mater. 245, 51–57 (2017)

    CAS  Google Scholar 

  • Haque, E., Islam, M., Pourazadi, E., Sarkar, S., Harris, A.T., Minett, A.I., Yanmaz, E., Alshehri, S.M., Ide, Y., Wu, K.C.W., Kaneti, Y.V., Yamauchi, Y., Hossain, S.A.: Boron functionalized graphene oxide-organic frameworks for highly efficient CO2 capture. Chem. Asian J. 12, 283–288 (2017)

    CAS  PubMed  Google Scholar 

  • Hiremath, V., Hwang, S., Seo, J.G.: Enhanced cyclic stability and CO2 capture performance of MgO-Al2O3 sorbent decorated with eutectic mixture. Energy Procedia 114, 2421–2428 (2017)

    CAS  Google Scholar 

  • Hiyoshi, N., Yogo, Y., Yashima, T.: Adsorption characteristics of carbon dioxide on organically functionalized SBA-15. Microporous Mesoporous Mater. 84, 357–365 (2005)

    CAS  Google Scholar 

  • Hou, X., Zhuang, L., Ma, B., Chen, S., He, H., Yin, F.: Silanol-rich platelet silica modified with branched amine for efficient CO2 capture. Chem. Eng. Sci. 181, 315–325 (2018)

    CAS  Google Scholar 

  • Huang, C.C., Tour, J.J., Kittrell, C., Espinal, L., Alemany, L.B., Tour, J.M.: Capturing carbon dioxide as a polymer from natural gas. Nature Commun. 5, 3961 (2014)

    Google Scholar 

  • Huang, C.M., Hsu, H.W., Liu, W.H., Cheng, J.Y., Chen, W.C., Wen, T.W., Chen, W.: Development of post-combustion CO2 capture with CaO/CaCO3 looping in a bench scale plant. Energy Procedia 4, 1268–1275 (2011)

    CAS  Google Scholar 

  • Huang, N., Chen, X., Krishna, R., Jiang, D.: Two-dimensional covalent organic frameworks for carbon dioxide capture through channel-wall functionalization. Angew. Chem. Int. Ed. 54, 2986–2990 (2015)

    CAS  Google Scholar 

  • Jiao, J., Cao, J., Xia, Y., Zhao, L.: Improvement of adsorbent materials for CO2 capture by amine functionalized mesoporous silica with worm-hole framework structure. Chem. Eng. J. 306, 9–16 (2016)

    CAS  Google Scholar 

  • Landers, J., Gor, G.Y., Neimark, A.V.: Density functional theory methods for characterization of porous materials. Colloid Surf. A 437, 3–32 (2013)

    CAS  Google Scholar 

  • Lashaki, M.J., Sayari, A.: CO2 capture using triamine-grafted SBA-15: the impact of the support pore structure. Chem. Eng. J. 334, 1260–1269 (2018)

    Google Scholar 

  • Lee, S.C., Chae, H.J., Lee, S.J., Choi, B.Y., Yi, C.K., Lee, J.B., Ryu, C.K., Kim, J.C.: Development of regenerable MgO-based sorbent promoted with K2CO3 for CO2 capture at low temperatures. Environ. Sci. Technol. 42, 2736–2741 (2008)

    CAS  PubMed  Google Scholar 

  • Lin, Y., Kong, C., Zhang, Q., Chen, L.: Metal-organic frameworks for carbon dioxide capture and methane storage. Adv. Energy Mater. 7, 1601296 (2017)

    Google Scholar 

  • Lin, Z., Wei, J.: CO2 adsorption on activated carbon/SBA-15 with TETA/TEPA modification. Key Eng. Mater. 735, 164–167 (2017)

    Google Scholar 

  • McGrail, B.P., Schaef, H.T., Spane, F.A., Cliff, J.B., Qafoku, O., Horner, J.A., Thompson, C.J., Owen, A.T., Sullivan, C.E.: Field validation of supercritical CO2 reactivity with basalts. Environ. Sci. Technol. Lett. 4, 6–10 (2017)

    CAS  Google Scholar 

  • Mello, M.R., Phanon, D., Silveira, G.Q., Llewellyn, P.L., Ronconi, C.M.: Amine-modified MCM-41 mesoporous silica for carbon dioxide capture. Microporous Mesoporous Mater. 143, 174–179 (2011)

    CAS  Google Scholar 

  • Merel, J., Clausse, M., Meunier, F.: Experimental investigation on CO2 post-combustion capture by indirect thermal swing adsorption using 13X and 5A zeolites. Ind. Eng. Chem. Res. 47, 209–215 (2008)

    CAS  Google Scholar 

  • Min, K., Choi, W., Choi, M.: Macroporous silica with thick framework for steam-stable and high-performance poly(ethyleneimine)/silica CO2 adsorbent. Chemsuschem 10(11), 2518–2526 (2017)

    CAS  PubMed  Google Scholar 

  • Nikulshina, V., Gebald, C., Steinfeld, A.: CO2 capture from atmospheric air via consecutive CaO-carbonation and CaCO3-calcination cycles in a fluidized-bed solar reactor. Chem. Eng. J. 146, 244–248 (2009)

    CAS  Google Scholar 

  • Olea, A., Sanz-Pérez, E.S., Arencibia, A., Sanz, R., Calleja, G.: Amino-functionalized pore-expanded SBA-15 for CO2 adsorption. Adsorption 19(2–4), 589–600 (2013)

    CAS  Google Scholar 

  • Pera-Titus, M.: Porous inorganic membranes for CO2 capture: present and prospects. Chem. Rev. 114, 1413–1492 (2014)

    CAS  PubMed  Google Scholar 

  • Plaza, M.G., García, S., Rubiera, F., Pis, J.J., Pevida, C.: Post-combustion CO2 capture with a commercial activated carbon: comparison of different regeneration strategies. Chem. Eng. J. 163, 41–47 (2010)

    CAS  Google Scholar 

  • Rao, N., Wang, M., Shang, Z., Hou, Y., Fan, G., Li, J.: CO2 adsorption by amine-functionalized MCM-41: a comparison between impregnation and grafting modification methods. Energy Fuels 32, 670–677 (2018)

    CAS  Google Scholar 

  • Reddy, M.K.R., Xu, Z.P., Lu, G.Q., da Costa, J.C.D.: Layered double hydroxides for CO2 capture: structure evolution and regeneration. Ind. Eng. Chem. Res. 45, 7504–7509 (2006)

    Google Scholar 

  • Sánchez-Zambrano, K.S., Duarte, L.L., Maia, D.A.S., Vilarrasa-García, E., Bastos-Neto, M., Rodríguez-Castellón, E., Azevedo, D.C.S.: CO2 capture with mesoporous silicas modified with amines by double functionalization: assessment of adsorption/desorption cycles. Materials 11, 887–906 (2018)

    PubMed Central  Google Scholar 

  • Santos, S.C.G., Garrido Pedrosa, A.M., Souza, M.J.B., Cecilia, J.A., Rodríguez- Castellón, E.: Carbon dioxide adsorption on micro-mesoporous composite materials of ZSM-12/MCM-48 type: the role of the contents of zeolite and functionalized amine. Mater. Res. Bull. 70, 663–672 (2015)

    CAS  Google Scholar 

  • Sanz, R., Calleja, G., Arencibia, A., Sanz-Pérez, E.S.: CO2 adsorption on branched polyethyleneimine-impregnated mesoporous silica SBA-15. Appl. Surf. Sci. 256, 5323–5328 (2010)

    CAS  Google Scholar 

  • Sanz, R., Calleja, G., Arencibia, A., Sanz-Perez, E.S.: Development of high efficiency adsorbents for CO2 capture based on a double-functionalization method of grafting and impregnation. J. Mater. Chem. A 1, 1956–1962 (2013)

    CAS  Google Scholar 

  • Sánz-Pérez, E.S., Dantas, T.C.M., Arencibia, A., Calleja, G., Guedes, A.P.M.A., Araujo, A.S., Sanz, R.: Reuse and recycling of amine-functionalized silica materials for CO2 adsorption. Chem. Eng. J. 308, 1021–1033 (2017)

    Google Scholar 

  • Sanz-Pérez, E.S., Murdock, C.R., Didas, S.A., Jones, C.W.: Direct capture of CO2 from ambient air. Chem. Rev. 116, 11840–11876 (2016)

    PubMed  Google Scholar 

  • Sanz-Pérez, E.S., Olivares-Marín, M., Arencibia, A., Sanz, R., Calleja, G., Maroto-Valer, M.M.: CO2 adsorption performance of amino-functionalized SBA-15 under postcombustión conditions. Int. J. Greenh. Gas Control 17, 366–375 (2013)

    Google Scholar 

  • Sayari, A., Belmabkhout, Y., Serna-Guerrero, R.: Flue gas treatment via CO2 adsorption. Chem. Eng. J. 171, 760–774 (2011)

    CAS  Google Scholar 

  • Sayari, A., Heydari-Gorji, A., Yang, Y.: CO2-induced degradation of amine-containing adsorbents: reaction products and pathways. J. Am. Chem. Soc. 134, 13834–13842 (2012)

    CAS  PubMed  Google Scholar 

  • Stephens, G.L., Kahn, B.H., Richardson, M.: The super greenhouse effect in a changing climate. J. Clim. 29, 5469–5482 (2016)

    Google Scholar 

  • Snæbjörnsdóttir, S.O., Gislason, S.R.: CO2 storage potential of basaltic rocks offshore Iceland. Energy Procedia 86, 371–380 (2016)

    Google Scholar 

  • Son, W.-J., Choi, J.-S., Ahn, W.-S.: Adsorptive removal of carbon dioxide using polyethyleneimine—loaded mesoporous silica materials. Microporous Mesoporous Mater. 113, 31–40 (2008)

    CAS  Google Scholar 

  • Sumida, K., Rogow, D.L., Mason, J.A., McDonald, T.M., Bloch, E.D., Herm, Z.R., Bae, T.H., Long, J.R.: Carbon dioxide capture in metal-organic frameworks. Chem. Rev. 112, 724–781 (2012)

    CAS  PubMed  Google Scholar 

  • Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.W.: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87, 1051–1069 (2015)

    CAS  Google Scholar 

  • Vilarrasa-Garcıa, E., Cecilia, J.A., Bastos-Neto, M., Cavalcante Jr., C.L., Azevedo, D.C.S., Rodriguez-Castellon, E.: CO2/CH4 adsorption separation process using pore expanded mesoporous silicas functionalizated by APTES grafting. Adsorption 21, 565–575 (2015)

    Google Scholar 

  • Vilarrasa-García, E., Cecilia, J.A., Bastos-Neto, M., Cavalcante Jr., C.L., Azevedo, D.C.S., Rodríguez-Castellón, E.: Microwave-assisted nitric acid treatment of sepiolite and functionalization with polyethylenimine applied to CO2 capture and CO2/N2 separation. Appl. Surf. Sci. 410, 315–325 (2017)

    Google Scholar 

  • Vilarrasa-García, E., Cecilia, J.A., Ortigosa-Moya, E.M., Cavalcante Jr., C.L., Azevedo, D.C.S., Rodríguez-Castellón, E.: “Low-cost” pore expanded SBA-15 functionalized with amine groups applied to CO2 adsorption. Materials 8, 2495–2513 (2015a)

    PubMed Central  Google Scholar 

  • Vilarrasa-García, E., Cecilia, J.A., Santos, S.M.L., Cavalcante Jr., C.L., Jiménez-Jiménez, J., Azevedo, D.C.S., Rodríguez-Castellón, E.: CO2 adsorption on APTES functionalized mesocellular foams obtained from mesoporous silicas. Microporous Mesoporous Mater. 187, 125–134 (2014)

    Google Scholar 

  • Vilarrasa-García, E., Ortigosa-Moya, E.M., Cecilia, J.A., Cavalcante Jr., C.L., Jiménez-Jiménez, J., Azevedo, D.C.S., Rodríguez-Castellón, E.: CO2 adsorption on amine modified mesoporous silicas: effect of the progressive disorder of the honeycomb arrangement. Microporous Mesoporous Mater. 209, 172–183 (2015b)

    Google Scholar 

  • Wang, X., Schwartz, V., Clark, J.C., Ma, X., Overbury, S.H., Xu, X., Song, C.: Infrared study of CO2 sorption over “molecular basket” sorbent consisting of polyethylenimine-modified mesoporous molecular sieve. J. Phys. Chem. C 113, 7260–7268 (2009)

    CAS  Google Scholar 

  • Xu, X., Song, C., Andrésen, J.M., Miller, B.G., Scaroni, A.W.: Preparation and characterization of novel CO2 molecular basket adsorbents based on polymer-modified mesoporous molecular sieve MCM-41. Microporous Mesoporous Mater. 62, 29–45 (2003)

    CAS  Google Scholar 

  • Yan, X., Zhang, L., Zhang, Y., Qiao, K., Yan, Z., Komarneni, S.: Amine-modified mesocellular silica foams for CO2 capture. Chem. Eng. J. 168, 918–924 (2011)

    CAS  Google Scholar 

  • Zeng, Y., Zou, R., Zhao, Y.: Covalent organic frameworks for CO2 capture. Adv. Mater. 28, 2855–2873 (2016)

    CAS  PubMed  Google Scholar 

  • Zhang, J., Singh, R., Webley, P.A.: Alkali and alkaline-earth cation exchanged chabazite zeolites for adsorption based CO2 capture. Microporous Mesoporous Mater. 111, 478–487 (2008)

    CAS  Google Scholar 

  • Zhao, D., Feng, J., Huo, Q., Melosh, N., Fredrickson, G.H., Chmelka, B.F., Stucky, G.D.: Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pore. Science 279, 548–552 (1998)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was funded by the Ministry of Science, Innovation and Universities. (Spain), Grant Nos. RTI2018-099668-B-C22 and FEDER funds. We also thank to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Ministry of Science and Technology, Brazil) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Ministry of Education, Brazil) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique Vilarrasa-García.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cecilia, J.A., Vilarrasa-García, E., Morales-Ospino, R. et al. Insights into CO2 adsorption in amino-functionalized SBA-15 synthesized at different aging temperature. Adsorption 26, 225–240 (2020). https://doi.org/10.1007/s10450-019-00118-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-019-00118-1

Keywords

Navigation