Skip to main content

Advertisement

Log in

Assessing the potential of nanoporous carbon adsorbents from polyethylene terephthalate (PET) to separate CO2 from flue gas

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

A series of nanoporous carbons was obtained by physical activation of polyethylene terephthalate and investigated for the separation of CO2 from flue gas. The prepared carbons exhibited extremely low functionalization—negligible content in oxygen and other heteroatoms—accompanied by well-developed porous networks consisting of gradually increasing surface areas and micropore volumes. Such features allowed to study the role of nanopore confinement in the separation of carbon dioxide in CO2/N2 gas mixtures. The analysis of the adsorption isotherms of individual gases and their mixtures revealed different trends for the CO2 uptake and the selectivity. Whereas CO2 uptake was larger in the carbons with higher burn-off degree, the selectivity of CO2 over N2 was favored in the carbons with a higher fraction of narrow micropores. The differential adsorption enthalpy curves are typical of highly microporous samples reaching values close to those found in zeolites for low loadings. Data also show that the choice of the best adsorbent for cyclic gas adsorption and separation processes should consider a broad context, taking into account various parameters simultaneously such as gas selectivity, working capacity, adsorption enthalpy and energy consumption in the synthesis of the adsorbent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Ahmadpour, A., Wang, K., Do, D.D.: Comparison of models on the prediction of binary equilibrium data of activated carbons. AIChE J. 44, 740–752 (1998)

    Article  CAS  Google Scholar 

  • Brunauer, S., Emmett, P.H.: The use of low temperature van der waals adsorption isotherms in determining the surface areas of various adsorbents. J. Am. Chem. Soc. 59, 2682–2689 (1937)

    Article  CAS  Google Scholar 

  • Cai, J., Qi, J., Yang, C., Zhao, X.: Poly(vinylidene chloride)-based carbon with ultrahigh microporosity and outstanding performance for CH4 and H2 storage and CO2 capture. ACS Appl. Mater. Interfaces 6, 3703–3711 (2014)

    Article  CAS  Google Scholar 

  • Casco, M.E., Martínez-Escandell, M., Silvestre-Albero, J., Rodríguez-Reinoso, F.: Effect of the porous structure in carbon materials for CO2 capture at atmospheric and high-pressure. Carbon N. Y. 67, 230–235 (2014)

    Article  CAS  Google Scholar 

  • Dreisbach, F., Staudt, R., Keller, J.U.: High pressure adsorption data of methane, nitrogen, carbon dioxide and their binary and ternary mixtures on activated carbon. Adsorption 5, 215–227 (1999)

    Article  CAS  Google Scholar 

  • Dreisbach, F., Seif, R.A.H., Lösch, H.W.: Gravimetric measurement of adsorption equilibria of gas mixture CO/H2 with a magnetic suspension balance. Chem. Eng. Technol. 25, 1060–1065 (2002)

    Article  CAS  Google Scholar 

  • Dubinin, M.M., Radushkevich, L.V.: Equation of the characteristic curve of activated charcoal. Proc. Acad. Sci. Phys. Chem. Sect. USSR 55, 331–333 (1947)

    Google Scholar 

  • Figueroa, J.D., Fout, T., Plasynski, S., McIlvried, H., Srivastava, R.D.: Advances in CO2 capture technology—the U.S. department of energy’s carbon sequestration program. Int. J. Greenh. Gas Control 2, 9–20 (2008)

    Article  CAS  Google Scholar 

  • Garcia-Cuello, V., Moreno-Piraján, J.C., Giraldo-Gutiérrez, L., Sapag, K., Zgrablich, G.: A new microcalorimeter of adsorption for the determination of differential enthalpies. Microporous Mesoporous Mater. 120, 239–245 (2009)

    Article  CAS  Google Scholar 

  • Garrido, J., Linares-Solano, A., Martin-Martinez, J.M., Molina-Sabio, M., Rodriguez-Reinoso, F., Torregrosa, R.: Use of N2 vs. CO2 in the characterization of activated carbons. Langmuir 3, 76–81 (1987)

    Article  CAS  Google Scholar 

  • Ge, C., Song, J., Qin, Z., Wang, J., Fan, W.: Polyurethane foam-based ultramicroporous carbons for CO2 capture. ACS Appl. Mater. Interfaces 8, 18849–18859 (2016)

    Article  CAS  Google Scholar 

  • Himeno, S., Komatsu, T., Fujita, S.: High-pressure adsorption equilibria of methane and carbon dioxide on several activated carbons. J. Chem. Eng. Data 50, 369–376 (2005)

    Article  CAS  Google Scholar 

  • IPCC: Summary for policymakers, in: climate change 2014, mitigation of climate change. contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change (2014)

  • Jagiello, J., Olivier, J.P.: 2D-NLDFT adsorption models for carbon slit-shaped pores with surface energetical heterogeneity and geometrical corrugation. Adsorption 19, 777–783 (2013)

    Article  CAS  Google Scholar 

  • Jagiello, J., Ania, C., Parra, J.B., Cook, C.: Dual gas analysis of microporous carbons using 2D-NLDFT heterogeneous surface model and combined adsorption data of N2 and CO2. Carbon N. Y. 91, 330–337 (2015)

    Article  CAS  Google Scholar 

  • Kacem, M., Pellerano, M., Delebarre, A.: Pressure swing adsorption for CO2/N2 and CO2/CH4 separation: comparison between activated carbons and zeolites performances. Fuel Process. Technol. 138, 271–283 (2015)

    Article  CAS  Google Scholar 

  • Kim, Y.E., Lim, J.A., Jeong, S.K., Yoon, Y.I., Bae, S.T., Nam, S.C.: Comparison of carbon dioxide absorption in aqueous MEA, DEA, TEA, and AMP solutions. Bull. Korean Chem. Soc. 34, 783–787 (2013)

    Article  CAS  Google Scholar 

  • Langmuir, I.: The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40, 1361–1403 (1918)

    Article  CAS  Google Scholar 

  • Llewellyn, P.L., Maurin, G.: Gas adsorption microcalorimetry and modelling to characterise zeolites and related materials. Comptes Rendus Chim. 8, 283–302 (2005)

    Article  CAS  Google Scholar 

  • Market, R.: China activated carbon industry report, 2014–2017 (2017)

  • Marsh, H., Rodríguez-Reinoso, F.: Chapter 5: Activation processes (thermal or physical). In: Activated Carbon, vol. 2, pp. 243–321 (2006a)

  • Marsh, H., Rodríguez-Reinoso, F.: Chapter 4: Characterization of activated carbon. Activated Carbon (2006b)

  • Parra, J., Ania, C., Arenillas, A., Pis, J.: Textural characterisation of activated carbons obtained from poly(ethylene terephthalate) by carbon dioxide activation. In: Studies in Surface Science and Catalysis. pp. 537–543. Elsevier, Amsterdam (2002)

    Google Scholar 

  • Parra, J.B., Ania, C.O., Arenillas, A., Rubiera, F., Palacios, J.M., Pis, J.J.: Textural development and hydrogen adsorption of carbon materials from PET waste. J. Alloys Compd. 379, 280–289 (2004a)

    Article  CAS  Google Scholar 

  • Parra, J.B., Ania, C.O., Arenillas, A., Rubiera, F., Pis, J.J.: High value carbon materials from PET recycling. Appl. Surf. Sci. 238, 304–308 (2004b)

    Article  CAS  Google Scholar 

  • Parra, J., Ania, C., Arenillas, A., Rubiera, F., Pis, J., Palacios, J.: Structural changes in polyethylene terephthalate (PET) waste materials caused by pyrolysis and CO2 activation. Adsorpt. Sci. Technol. 24, 439–449 (2006)

    Article  CAS  Google Scholar 

  • PlasticsEurope: Plastics—the Facts 2017 An analysis of European plastics production, demand and waste data Plastics—the Facts is an analysis of the data related to the production, demand and waste information on production and the industry’s contribution to (2017)

  • Rios, R.B., Bastos-Neto, M., Amora, M.R. Jr., Torres, A.E.B., Azevedo, D.C.S., Cavalcante, C.L. Jr.: Experimental analysis of the efficiency on charge/discharge cycles in natural gas storage by adsorption. Fuel 90, 113–119 (2011)

    Article  CAS  Google Scholar 

  • Rouquerol, J., Rouquerol, F.: Methodology of gas adsorption. In: Adsorption by Powders and Porous Solids. pp. 57–104. Elsevier, Amsterdam (2014)

    Chapter  Google Scholar 

  • Sawant, S.Y., Somani, R.S., Sharma, S.S., Bajaj, H.C.: Solid-state dechlorination pathway for the synthesis of few layered functionalized carbon nanosheets and their greenhouse gas adsorptivity over CO and N2. Carbon N. Y. 68, 210–220 (2014)

    Article  CAS  Google Scholar 

  • Silvestre-Albero, A., Silvestre-Albero, J., Martínez-Escandell, M., Rodríguez-Reinoso, F.: Micro/mesoporous activated carbons derived from polyaniline: promising candidates for CO2 adsorption. Ind. Eng. Chem. Res. 53, 15398–15405 (2014)

    Article  CAS  Google Scholar 

  • Sips, R.: On the structure of a catalyst surface. J. Chem. Phys. 16, 490 (1948)

    Article  CAS  Google Scholar 

  • Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.W.: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87, 1051–1069 (2015)

    Article  CAS  Google Scholar 

  • Wang, J., Senkovska, I., Oschatz, M., Lohe, M.R., Borchardt, L., Heerwig, A., Liu, Q., Kaskel, S.: Imine-linked polymer-derived nitrogen-doped microporous carbons with excellent CO2 capture properties. ACS Appl. Mater. Interfaces 5, 3160–3167 (2013)

    Article  CAS  Google Scholar 

  • Wiersum, A.D., Chang, J.S., Serre, C., Llewellyn, P.L.: An adsorbent performance indicator as a first step evaluation of novel sorbents for gas separations: application to metal-organic frameworks. Langmuir 29, 3301–3309 (2013)

    Article  CAS  Google Scholar 

  • Wong, S., Bioletti, R.: Carbon Dioxide Separation Technologies. Alberta Research Council, Edmonton (2002)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank of financial support of Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – CAPES, Petróleo Brasileiro S.A. – Petrobras and Agencia Estatal CSIC (Grant i-link1044). The support of Universidade de Campinas – UNICAMP in the characterization the adsorbents is also greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. C. S. Azevedo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1005 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moura, P.A.S., Vilarrasa-Garcia, E., Maia, D.A.S. et al. Assessing the potential of nanoporous carbon adsorbents from polyethylene terephthalate (PET) to separate CO2 from flue gas. Adsorption 24, 279–291 (2018). https://doi.org/10.1007/s10450-018-9943-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-018-9943-4

Keywords

Navigation