Skip to main content
Log in

Extraction of propane and ethane from natural gas on ultramicroporous carbon adsorbent with record selectivity

超微孔碳吸附剂实现天然气中丙烷和乙烷的高选择性提取

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

The separation of light hydrocarbon mixtures and the extraction of C3H8 and C2H6 from natural gas are of significant importance in natural gas purification and upgrading. Microporous carbon adsorbents are promising in light hydrocarbon separation. However, the fabrication of uniform ultramicropores to boost separation selectivity remains challenging. Herein, we fabricated a series of poly(vinylidene chloride)-resin-derived ultramicroporous carbon adsorbents with a relatively uniform pore size (5.2–5.3 Å) by activator-free pyrolysis. The optimal C-PVDC-800 exhibited record-high ideal adsorption solution theory (IAST) selectivity for C3H8/CH4 (3387) and C2H6/CH4 (75) and Henry’s selectivity for C3H8/CH4 (369) among all reported adsorbents under ambient conditions, combined with ultrahigh uptake of C3H8 (3.9 mmol g−1, 0.05 bar) and C2H6 (2.67 mmol g−1, 0.10 bar) at low partial pressures and 298 K. More importantly, fast gas adsorption kinetics favorable for fixed-bed adsorption applications was realized. Breakthrough experiments and cycling tests further confirm the superb separation performance of the extraction of C3H8 and C2H6 from natural gas.

摘要

轻烃混合物分离以及从天然气中提取C3H8和C2H6对天然气纯化及劣质天然气升级意义重大. 微孔碳吸附剂在轻烃分离中潜力巨大, 然而构筑孔径均一的超微孔从而增强分离选择性仍是巨大挑战. 在本文中, 我们采取无活化剂热解法制备了一系列孔径均一(5.2到5.3 Å)的聚偏二氯乙烯树脂(PVDC)衍生的超微孔碳吸附剂. 与已报道的吸附剂相比, 优选的C-PVDC-800对C3H8/CH4及C2H6/CH4在298 K和1.0 bar下表现出更高的理想吸附溶液理论(IAST)选择性(分别为3387和75), 对C3H8/CH4具有最高的Henry系数选择性(369). 此外, C-PVDC-800在低压下对C3H8和C2H6具有极高的吸附量. 更重要的是, 该材料对所有气体分子都实现了快速的动力学吸附, 有利于应用于固定床吸附过程. 固定床穿透实验及循环测试进一步证实了该材料从天然气中选择性提取C3H8和C2H6的优异性能.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Connolly BM, Aragones-Anglada M, Gandara-Loe J, et al. Tuning porosity in macroscopic monolithic metal-organic frameworks for exceptional natural gas storage. Nat Commun, 2019, 10: 2345

    Article  CAS  Google Scholar 

  2. Saha D, Grappe HA, Chakraborty A, et al. Postextraction separation, on-board storage, and catalytic conversion of methane in natural gas: A review. Chem Rev, 2016, 116: 11436–11499

    Article  CAS  Google Scholar 

  3. Chen F, Zhang Z, Yang Q, et al. Microporous carbon adsorbents prepared by activating reagent-free pyrolysis for upgrading low-quality natural gas. ACS Sustainable Chem Eng, 2020, 8: 977–985

    Article  CAS  Google Scholar 

  4. Lv D, Wu Y, Chen J, et al. Improving CH4/N2 selectivity within isomeric Al-based MOFs for the highly selective capture of coal-mine methane. AIChE J, 2020, 66: e16287

    Article  CAS  Google Scholar 

  5. Hu G, Xiao G, Guo Y, et al. Separation of methane and nitrogen using ionic liquidic zeolites by pressure vacuum swing adsorption. AIChE J, 2022, 68: e17668

    Article  CAS  Google Scholar 

  6. Shen J, Dailly A, Beckner M. Natural gas sorption evaluation on microporous materials. Microporous Mesoporous Mater, 2016, 235: 170–177

    Article  CAS  Google Scholar 

  7. Duan X, He Y, Cui Y, et al. Highly selective separation of small hydrocarbons and carbon dioxide in a metal-organic framework with open copper(II) coordination sites. RSC Adv, 2014, 4: 23058–23063

    Article  CAS  Google Scholar 

  8. Yao S, Wang D, Cao Y, et al. Two stable 3D porous metal-organic frameworks with high performance for gas adsorption and separation. J Mater Chem A, 2015, 3: 16627–16632

    Article  CAS  Google Scholar 

  9. Wang D, Zhao T, Cao Y, et al. High performance gas adsorption and separation of natural gas in two microporous metal-organic frameworks with ternary building units. Chem Commun, 2014, 50: 8648–8650

    Article  CAS  Google Scholar 

  10. Li L, Wang X, Liang J, et al. Water-stable anionic metal-organic framework for highly selective separation of methane from natural gas and pyrolysis gas. ACS Appl Mater Interfaces, 2016, 8: 9777–9781

    Article  CAS  Google Scholar 

  11. Li J, Luo X, Zhao N, et al. Two finite binuclear [M22−OH)(COO)2] (M = Co, Ni) based highly porous metal-organic frameworks with high performance for gas sorption and separation. Inorg Chem, 2017, 56: 4141–4147

    Article  CAS  Google Scholar 

  12. Estupiñan Perez L, Avila AM, Sawada JA, et al. Process optimization-based adsorbent selection for ethane recovery from residue gas. Sep Purif Technol, 2016, 168: 19–31

    Article  Google Scholar 

  13. Banerjee D, Liu J, Thallapally PK. Separation of C2 hydrocarbons by porous materials: Metal organic frameworks as platform. Comments Inorg Chem, 2015, 35: 18–38

    Article  CAS  Google Scholar 

  14. Ren T, Patel M, Blok K. Olefins from conventional and heavy feedstocks: Energy use in steam cracking and alternative processes. Energy, 2006, 31: 425–451

    Article  CAS  Google Scholar 

  15. Sholl DS, Lively RP. Seven chemical separations to change the world. Nature, 2016, 532: 435–437

    Article  Google Scholar 

  16. Bae YS, Snurr RQ. Development and evaluation of porous materials for carbon dioxide separation and capture. Angew Chem Int Ed, 2011, 50: 11586–11596

    Article  CAS  Google Scholar 

  17. Cadiau A, Adil K, Bhatt PM, et al. A metal-organic framework-based splitter for separating propylene from propane. Science, 2016, 353: 137–140

    Article  CAS  Google Scholar 

  18. Nugent P, Belmabkhout Y, Burd SD, et al. Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation. Nature, 2013, 495: 80–84

    Article  CAS  Google Scholar 

  19. Liao PQ, Huang NY, Zhang WX, et al. Controlling guest conformation for efficient purification of butadiene. Science, 2017, 356: 1193–1196

    Article  CAS  Google Scholar 

  20. Chen F, Lai D, Guo L, et al. Deep desulfurization with record SO2 adsorption on the metal-organic frameworks. J Am Chem Soc, 2021, 143: 9040–9047

    Article  CAS  Google Scholar 

  21. Zhao X, Wang Y, Li DS, et al. Metal-organic frameworks for separation. Adv Mater, 2018, 30: 1705189

    Article  Google Scholar 

  22. Lyndon R, You W, Ma Y, et al. Tuning the structures of metal-organic frameworks via a mixed-linker strategy for ethylene/ethane kinetic separation. Chem Mater, 2020, 32: 3715–3722

    Article  CAS  Google Scholar 

  23. Furukawa H, Cordova KE, O’Keeffe M, et al. The chemistry and applications of metal-organic frameworks. Science, 2013, 341: 1230444

    Article  Google Scholar 

  24. Hu Z, Wang Y, Wang X, et al. Solution-reprocessable microporous polymeric adsorbents for carbon dioxide capture. AIChE J, 2018, 64: 3376–3389

    Article  CAS  Google Scholar 

  25. Chen F, Wang J, Guo L, et al. Carbon dioxide capture in gallate-based metal-organic frameworks. Sep Purif Technol, 2022, 292: 121031

    Article  CAS  Google Scholar 

  26. Huang X, Chen F, Sun H, et al. Separation of perfluorinated electron specialty gases on microporous carbon adsorbents with record selectivity. Sep Purif Technol, 2022, 292: 121059

    Article  CAS  Google Scholar 

  27. Yuan Y, Wu H, Xu Y, et al. Selective extraction of methane from C1/C2/C3 on moisture-resistant MIL-142A with interpenetrated networks. Chem Eng J, 2020, 395: 125057

    Article  CAS  Google Scholar 

  28. Zhang Y, Yang L, Wang L, et al. A microporous metal-organic framework supramolecularly assembled from a CuII dodecaborate cluster complex for selective gas separation. Angew Chem Int Ed, 2019, 58: 8145–8150

    Article  CAS  Google Scholar 

  29. He Y, Zhang Z, Xiang S, et al. A robust doubly interpenetrated metal-organic framework constructed from a novel aromatic tricarboxylate for highly selective separation of small hydrocarbons. Chem Commun, 2012, 48: 6493–6495

    Article  CAS  Google Scholar 

  30. Gao S, Morris CG, Lu Z, et al. Selective hysteretic sorption of light hydrocarbons in a flexible metal-organic framework material. Chem Mater, 2016, 28: 2331–2340

    Article  CAS  Google Scholar 

  31. Jia J, Wang L, Sun F, et al. The adsorption and simulated separation of light hydrocarbons in isoreticular metal-organic frameworks based on dendritic ligands with different aliphatic side chains. Chem Eur J, 2014, 20: 9073

    CAS  Google Scholar 

  32. Peralta D, Chaplais G, Simon-Masseron A, et al. Comparison of the behavior of metal-organic frameworks and zeolites for hydrocarbon separations. J Am Chem Soc, 2012, 134: 8115–8126

    Article  CAS  Google Scholar 

  33. Dong J, Lin YS, Liu W. Multicomponent hydrogen/hydrocarbon separation by MFI-type zeolite membranes. AIChE J, 2000, 46: 1957–1966

    Article  CAS  Google Scholar 

  34. Yang Y, Burke N, Ali S, et al. Experimental studies of hydrocarbon separation on zeolites, activated carbons and MOFs for applications in natural gas processing. RSC Adv, 2017, 7: 12629–12638

    Article  CAS  Google Scholar 

  35. Chen F, Huang X, Guo K, et al. Molecular sieving of propylene from propane in metal-organic framework-derived ultramicroporous carbon adsorbents. ACS Appl Mater Interfaces, 2022, 14: 30443–30453

    Article  CAS  Google Scholar 

  36. Yuan B, Wang J, Chen Y, et al. Unprecedented performance of N-doped activated hydrothermal carbon towards C2H6/CH4, CO2/CH4, and CO2/H2 separation. J Mater Chem A, 2016, 4: 2263–2276

    Article  CAS  Google Scholar 

  37. Zhang LH, Li WC, Liu H, et al. Thermoregulated phase-transition synthesis of two-dimensional carbon nanoplates rich in sp2 carbon and unimodal ultramicropores for kinetic gas separation. Angew Chem, 2018, 130: 1648–1651

    Article  Google Scholar 

  38. Chen F, Ding J, Guo K, et al. CoNi alloy nanoparticles embedded in metal-organic framework-derived carbon for the highly efficient separation of xenon and krypton via a charge-transfer effect. Angew Chem Int Ed, 2021, 60: 2431–2438

    Article  CAS  Google Scholar 

  39. Du S, Huang J, Anjum AW, et al. A novel mechanism of controlling ultramicropore size in carbons at sub-angstrom level for molecular sieving of propylene/propane mixtures. J Mater Chem A, 2021, 9: 23873–23881

    Article  CAS  Google Scholar 

  40. Saha D, Deng S. Adsorption equilibrium and kinetics of CO2, CH4, N2O, and NH3 on ordered mesoporous carbon. J Colloid Interface Sci, 2010, 345: 402–409

    Article  CAS  Google Scholar 

  41. Cai J, Qi J, Yang C, et al. Poly(vinylidene chloride)-based carbon with ultrahigh microporosity and outstanding performance for CH4 and H2 storage and CO2 capture. ACS Appl Mater Interfaces, 2014, 6: 3703–3711

    Article  CAS  Google Scholar 

  42. Yang X, Yu M, Zhao Y, et al. Remarkable gas adsorption by carbonized nitrogen-rich hypercrosslinked porous organic polymers. J Mater Chem A, 2014, 2: 15139–15145

    Article  CAS  Google Scholar 

  43. Zhang Y, Zhang P, Yu W, et al. Facile and controllable preparation of ultramicroporous biomass-derived carbons and application on selective adsorption of gas-mixtures. Ind Eng Chem Res, 2018, 57: 14191–14201

    Article  CAS  Google Scholar 

  44. Zhang P, Wen X, Wang L, et al. Algae-derived N-doped porous carbons with ultrahigh specific surface area for highly selective separation of light hydrocarbons. Chem Eng J, 2020, 381: 122731

    Article  CAS  Google Scholar 

  45. Wang J, Krishna R, Yang T, et al. Nitrogen-rich microporous carbons for highly selective separation of light hydrocarbons. J Mater Chem A, 2016, 4: 13957–13966

    Article  CAS  Google Scholar 

  46. Wu K, Guo L, Zhang Z, et al. Shaping of gallate-based metal-organic frameworks for adsorption separation of ethylene from acetylene and ethane. J Colloid Interface Sci, 2021, 581: 177–184

    Article  CAS  Google Scholar 

  47. Kwiatkowski JF. Activated Carbon: Classifications, Properties and Applications. New York: Nova Science Publishers, Incorporated, 2011

    Google Scholar 

  48. Adams JS, Itta AK, Zhang C, et al. New insights into structural evolution in carbon molecular sieve membranes during pyrolysis. Carbon, 2019, 141: 238–246

    Article  CAS  Google Scholar 

  49. Liang W, Xiao H, Lv D, et al. Novel asphalt-based carbon adsorbents with super-high adsorption capacity and excellent selectivity for separation for light hydrocarbons. Sep Purif Technol, 2018, 190: 60–67

    Article  CAS  Google Scholar 

  50. Luo J, Wang J, Cao Y, et al. Assembly of an indium-porphyrin framework JLU-Liu7: A mesoporous metal-organic framework with high gas adsorption and separation of light hydrocarbons. Inorg Chem Front, 2017, 4: 139–143

    Article  CAS  Google Scholar 

  51. Luo X, Sun L, Zhao J, et al. Three metal-organic frameworks based on binodal inorganic building units and hetero-O, N donor ligand: Solvothermal syntheses, structures, and gas sorption properties. Cryst Growth Des, 2015, 15: 4901–4907

    Article  CAS  Google Scholar 

  52. Ruthven DM. Principles of Adsorption and Adsorption Processes. New Jersey: John Wiley & Sons, 1984

    Google Scholar 

  53. Costa E, Calleja G, Domingo F. Adsorption of gaseous hydrocarbons on activated carbon: Characteristic kinetic curve. AIChE J, 1985, 31: 982–991

    Article  CAS  Google Scholar 

  54. Birkmann F, Pasel C, Luckas M, et al. Adsorption thermodynamics and kinetics of light hydrocarbons on microporous activated carbon at low temperatures. Ind Eng Chem Res, 2018, 57: 8023–8035

    Article  CAS  Google Scholar 

  55. Nandanwar SU, Corbin DR, Shiflett MB. A review of porous adsorbents for the separation of nitrogen from natural gas. Ind Eng Chem Res, 2020, 59: 13355–13369

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21878260, 21978254, and 22141001).

Author information

Authors and Affiliations

Authors

Contributions

Chen F, Guo K, and Bao Z designed the experiments. Chen F, Guo K, and Huang X performed the experiments. Chen F wrote the manuscript under the supervision of Bao Z and Ren Q. All authors contributed to the general discussion.

Corresponding author

Correspondence to Zongbi Bao  (鲍宗必).

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary information

Experimental details and supporting data are available in the online version of the paper.

Fuqiang Chen received his bachelor’s degree from Heifei University of Technology in 2017. He is currently a PhD candidate under the supervision of Prof. Qilong Ren and Prof. Zongbi Bao. His research interests focus on the design and application of porous adsorbents in the field of gas adsorption separation.

Kaiqing Guo received her master’s degree from Zhejiang University in 2021. She currently works for Hangzhou Oxygen Plant Group Co., Ltd., and is engaged in air separation. Her research interests focus on the application of porous carbons in natural gas purification.

Zongbi Bao received his bachelor and PhD degrees from Zhejiang University in 2003 and 2008, respectively. He then worked as a postdoctoral fellow at Zhejiang University and New Mexico State University from 2009 to 2010 and joined the College of Chemical and Biological Engineering at Zhejiang University in 2011. He obtained the National Excellent Youth Science Fund of National Science Foundation of China in 2017. He is currently a professor of chemical engineering at Zhejiang University. His research interests mainly focus on the development of porous adsorbents (metal-organic frameworks and porous carbons) and their applications in gas adsorption separation.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, F., Guo, K., Huang, X. et al. Extraction of propane and ethane from natural gas on ultramicroporous carbon adsorbent with record selectivity. Sci. China Mater. 66, 319–326 (2023). https://doi.org/10.1007/s40843-022-2096-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-022-2096-8

Keywords

Navigation