Skip to main content

Advertisement

Log in

Multicomponent adsorption of biogas compositions containing CO2, CH4 and N2 on Maxsorb and Cu-BTC using extended Langmuir and Doong–Yang models

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Upgrading raw biogas and landfill gas to methane purity >98 % is a vital prerequisite for the utilization of biogas for compressed natural gas pipeline applications. Pressure swing adsorption (PSA) is an industrial separation technology widely used for the separation and purification of methane rich streams from raw biogas and landfill gas. Current PSA technologies make use of differential adsorption of gases on traditional adsorbents, such as zeolites, activated alumina and molecular sieves. In order to evaluate the potential of new adsorbent materials, such as metal–organic frameworks (MOFs) for PSA applications, and for PSA process development, thermodynamic equilibrium adsorption isotherms data of the pure components and mixtures and their adsorption isosteric heats are required. In this work we use extended Langmuir (ELM) model and Doong–Yang multi-component (DYM) adsorption model to predict the isotherms of biogas compositions containing binary and ternary mixtures of CO2, CH4 and N2 on activated carbon Maxsorb and metal–organic framework Cu-BTC. The model parameters required for predicting the mixture adsorption isotherms using the ELM and DYM are obtained, respectively from the single-site Langmuir and Dubinin–Astakhov non-linear regression of pure gas isotherms experimentally measured at 298 K and over a pressure range of 0–5 MPa. Predicted data are compared with the experimental binary and ternary mixture adsorption isotherms on Norit R1 extra and Cu-BTC available in the literature. Selectivity and thermodynamic delta-loading of equimolar mixtures of CH4 and CO2 on Cu-BTC and Maxsorb are determined from the predicted mixture isotherms and are compared with that of a traditional PSA adsorbent, zeolite 13X.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Amankwah, K.A.G., Schwarz, J.A.: A modified approach for estimating pseudo-vapor pressures in the application of the Dubinin-Astakhov equation. Carbon 33(9), 1313–1319 (1995)

    Article  CAS  Google Scholar 

  • Bae, J.-S., Bhatia, S.K.: High-pressure adsorption of methane and carbon dioxide on coal. Energy Fuels 20(6), 2599–2607 (2006)

    Article  CAS  Google Scholar 

  • Bae, Y.-S., Mulfort, K.L., Frost, H., Ryan, P., Punnathanam, S., Broadbelt, L.J., Hupp, J.T., Snurr, R.Q.: Separation of CO2 from CH4 using mixed-ligand metal–organic frameworks. Langmuir 24(16), 8592–8598 (2008)

    Article  CAS  Google Scholar 

  • Bai, R., Yang, R.T.: A modification of the doong–yang model for gas mixture adsorption using the Lewis Relationship. Langmuir 21(18), 8326–8332 (2005)

    Article  CAS  Google Scholar 

  • Bárcia, P.S., Nicolau, M.P.M., Gallegos, J.M., Chen, B., Rodrigues, A.E., Silva, J.A.C.: Modeling adsorption equilibria of xylene isomers in a microporous metal–organic framework. Microporous Mesoporous Mater. 155, 220–226 (2012)

    Article  Google Scholar 

  • Casas, N., Schell, J., Pini, R., Mazzotti, M.: Fixed bed adsorption of CO2/H2 mixtures on activated carbon: experiments and modeling. Adsorption 18(2), 143–161 (2012)

    Article  CAS  Google Scholar 

  • Cavenati, S., Grande, C.A., Rodrigues, A.E.: Adsorption equilibrium of methane, carbon dioxide, and nitrogen on zeolite 13X at high pressures. J. Chem. Eng. Data 49(4), 1095–1101 (2004)

    Article  CAS  Google Scholar 

  • Cavenati, S., Grande, C.A., Rodrigues, A.E.: Separation of mixtures by layered pressure swing adsorption for upgrade of natural gas. Chem. Eng. Sci. 61(12), 3893–3906 (2006)

    Article  CAS  Google Scholar 

  • Cavenati, S., Grande, C.A., Rodrigues, A.E., Kiener, C., Müller, U.: Metal organic framework adsorbent for biogas upgrading. Ind. Eng. Chem. Res. 47(16), 6333–6335 (2008)

    Article  CAS  Google Scholar 

  • Chowdhury, P., Mekala, S., Dreisbach, F., Gumma, S.: Adsorption of CO, CO2 and CH4 on Cu-BTC and MIL-101 metal organic frameworks: effect of open metal sites and adsorbate polarity. Microporous Mesoporous Mater. 152, 246–252 (2012)

    Article  CAS  Google Scholar 

  • Doong, S.J., Yang, R.T.: A simple potential-theory model for predicting mixed-gas adsorption. Ind. Eng. Chem. Res. 27(4), 630–635 (1988)

    Article  CAS  Google Scholar 

  • Dreisbach, F., Staudt, R., Keller, J.U.: High pressure adsorption data of methane, nitrogen, carbon dioxide and their binary and ternary mixtures on activated carbon. Adsorption 5(3), 215–227 (1999)

    Article  CAS  Google Scholar 

  • Dubinin, A.M.M.: A study of the porous structure of active carbons using a variety of methods. Q Rev Chem Soc 9(2), 101–114 (1955)

    Article  CAS  Google Scholar 

  • Dubinin, M.M., Astakhov, V.A.: Development of the concepts of volume filling of micropores in the adsorption of gases and vapors by microporous adsorbents. Russ. Chem. Bull. 20(1), 3–7 (1971)

    Article  Google Scholar 

  • Dundar, E., Zacharia, R., Chahine, R., Bénard, P.: Performance comparison of adsorption isotherm models for supercritical hydrogen sorption on MOFs. Fluid Phase Equilib. 363, 74–85 (2014a)

    Article  CAS  Google Scholar 

  • Dundar, E., Zacharia, R., Chahine, R., Bénard, P.: Potential theory for prediction of high-pressure gas mixture adsorption on activated carbon and MOFs. Sep. Purif. Technol. 135, 229–242 (2014b)

    Article  CAS  Google Scholar 

  • Esteves, I.A.A.C., Lopes, M.S.S., Nunes, P.M.C., Mota, J.P.B.: Adsorption of natural gas and biogas components on activated carbon. Sep. Purif. Technol. 62(2), 281–296 (2008)

    Article  CAS  Google Scholar 

  • Follivi.: Caractérisation des matériaux adsorbants pour le stockage de l’hydrogène. Université du québec à Trois-Rivières. (2015)

  • Grande, C.A., Blom, R., Möller, A., Möllmer, J.: High-pressure separation of CH4/CO2 using activated carbon. Chem. Eng. Sci. 89, 10–20 (2013)

    Article  CAS  Google Scholar 

  • Halliburton.: Coalbed Methane: Principles and Practices. http://www.halliburton.com/public/pe/contents/Books_and_Catalogs/web/CBM/H06263_Chap_03.pdf (2007). Accessed 10 June 2015

  • Hamon, L., Jolimaître, E., Pirngruber, G.D.: CO2 and CH4 separation by adsorption using Cu-BTC metal–organic framework. Ind. Eng. Chem. Res. 49(16), 7497–7503 (2010)

    Article  CAS  Google Scholar 

  • Hamon, L., Llewellyn, P.L., Devic, T., Ghoufi, A., Clet, G., Guillerm, V., Pirngruber, G.D., Maurin, G., Serre, C., Driver, G., Beek, W.V., Jolimaître, E., Vimont, A., Daturi, M., Férey, G.: Co-adsorption and separation of CO2–CH4 mixtures in the highly flexible MIL-53(Cr) MOF. J. Am. Chem. Soc. 131(47), 17490–17499 (2009)

    Article  CAS  Google Scholar 

  • Harpalani, S., Pariti, U.M.: Study of coal sorption isotherms using a multicomponent gas mixture. In: Proceedings of the 1993 International Coalbed Methane Symposium, pp. 151–160 (1993)

  • Himeno, S., Komatsu, T., Fujita, S.: High-pressure adsorption equilibria of methane and carbon dioxide on several activated carbons. J. Chem. Eng. Data 50(2), 369–376 (2005)

    Article  CAS  Google Scholar 

  • Hirscher, M., Panella, B., Schmitz, B.: Metal-organic frameworks for hydrogen storage. Microporous Mesoporous Mater. 129(3), 335–339 (2010)

    Article  CAS  Google Scholar 

  • Lemmon, E.W., Huber, M.L., McLinden, M.O.: NIST reference fluid thermodynamic and transport properties–REFPROP, Version (2013)

  • Liang, Z., Marshall, M., Chaffee, A.L.: CO2 adsorption-based separation by metal organic framework (Cu-BTC) versus zeolite (13X). Energy Fuels 23(5), 2785–2789 (2009)

    Article  CAS  Google Scholar 

  • Mosher, K., He, J., Liu, Y., Rupp, E., Wilcox, J.: Molecular simulation of methane adsorption in micro- and mesoporous carbons with applications to coal and gas shale systems. Int. J. Coal Geol. 109–110, 36–44 (2013)

    Article  Google Scholar 

  • Myers, A.L., Prausnitz, J.M.: Thermodynamics of mixed-gas adsorption. AIChE J. 11(1), 121–127 (1965)

    Article  CAS  Google Scholar 

  • Otowa, T., Tanibata, R., Itoh, M.: Production and adsorption characteristics of MAXSORB: high-surface-area active carbon. Gas Sep. Purif. 7(4), 241–245 (1993)

    Article  CAS  Google Scholar 

  • Rasi, S., Veijanen, A., Rintala, J.: Trace compounds of biogas from different biogas production plants. Energy 32(8), 1375–1380 (2007)

    Article  CAS  Google Scholar 

  • Rege, S.U., Yang, R.T., Qian, K., Buzanowski, M.A.: Air-prepurification by pressure swing adsorption using single/layered beds. Chem. Eng. Sci. 56(8), 2745–2759 (2001)

    Article  CAS  Google Scholar 

  • Reich, R., Ziegler, W.T., Rogers, K.A.: Adsorption of methane, ethane, and ethylene gases and their binary and ternary mixtures and carbon-dioxide on activated carbon at 212-301 K and pressures to 35 atmospheres. Ind. Eng. Chem. Process Des. Dev. 19(3), 336–344 (1980)

    Article  CAS  Google Scholar 

  • Richard, M.A., Bénard, P., Chahine, R.: Gas adsorption process in activated carbon over a wide temperature range above the critical point. Part 1: modified Dubinin-Astakhov model. Adsorption 15(1), 43–51 (2009)

    Article  CAS  Google Scholar 

  • Ruthven, D.M.: Principles of Adsorption and Adsorption Processes. Wiley, New York (1984)

  • Schell, J., Casas, N., Pini, R., Mazzotti, M.: Pure and binary adsorption of CO2, H2, and N2 on activated carbon. Adsorption 18(1), 49–65 (2012)

    Article  CAS  Google Scholar 

  • Severn Wye Energy Agency.: Biomethane regions. Introduction to the Production of Biomethane from Biogas - A Guide for ENGLAND and WALES (UK). http://www.bio-methaneregions.eu/ (2012). Accessed on Mar 2015

  • Sheikh, M.A., Hassan, M.M., Loughlin, K.F.: Adsorption equilibria and rate parameters for nitrogen and methane on Maxsorb activated carbon. Gas Sep. Purif. 10(3), 161–168 (1996)

    Article  CAS  Google Scholar 

  • Thu, K., Kim, Y.-D., Ismil, A.B., Saha, B.B., Ng, K.C.: Adsorption characteristics of methane on Maxsorb III by gravimetric method. Appl. Therm. Eng. 72(2), 200–205 (2014)

    Article  CAS  Google Scholar 

  • Weigang, Z., Vanessa, F., Aylon, E., Izquierdo, M.T., Alain, C.: High-performances carbonaceous adsorbents for hydrogen storage. J. Phys. 416(1), 012024 (2013)

    Google Scholar 

  • Yang, R.T.: Gas Separation by Adsorption Processes. Imperial College Press, London (1997)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renju Zacharia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomez, L.F., Zacharia, R., Bénard, P. et al. Multicomponent adsorption of biogas compositions containing CO2, CH4 and N2 on Maxsorb and Cu-BTC using extended Langmuir and Doong–Yang models. Adsorption 21, 433–443 (2015). https://doi.org/10.1007/s10450-015-9684-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-015-9684-6

Keywords

Navigation