Skip to main content
Log in

Modeling water vapor adsorption/desorption cycles

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

This modeling work deals with the adsorption of water vapor on different porous materials where it undergoes capillary condensation and its adsorption/desorption isotherms exhibit hysteresis. The focus is on the description of the so called scanning curves, i.e. the adsorption/desorption isotherms observed when such an adsorbent is repeatedly loaded and unloaded in a range of conditions where hysteresis is observed, and on the simulation of fixed bed adsorption/desorption cycles. We use an approach originally developed by Štěpánek et al. (Chem Eng Sci 55(2):431–440, 2000), and expand it so as to include more general isotherms (not only the Dubinin–Radushkevich and Dubinin–Astakhov model, but also the Guggenheim–Anderson–de Boer model and the Do and Do model) and to allow for less than infinitely fast heat transfer, so as to consider non-isothermal situations. From a modeling point of view the results are satisfactory and highlight the need for better experimental data on water vapor adsorption, which need to be measured in enhanced experimental set-ups, capable to tightly control the relative humidity of the gas phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anderson, B.: Modifications of the Brunauer, Emmett and Teller equation. J. Am. Chem. Soc. 68(7), 686–691 (1946)

    Article  CAS  Google Scholar 

  • Casas, N., Schell, J., Pini, R., Mazzotti, M.: Fixed bed adsorption of CO2/H2 mixtures on activated carbon: experiments and modeling. Adsorption 18(2), 143–161 (2012)

    Google Scholar 

  • Do, D.D., Do, H.D.: A model for water adsorption in activated carbon. Carbon 38, 767–773 (2000)

    Article  CAS  Google Scholar 

  • Horikawa, T., Do, D.D., Nicholson, D.: Capillary condensation of adsorbates in porous materials. Adv. Colloid Interface Sci. 169(1), 40–58 (2011)

    Article  CAS  Google Scholar 

  • Leppäjärvi, T., Malinen, I., Kangas, J., Tanskanen, J.: Utilization of Pisat temperature-dependency in modelling adsorption on zeolites. Chem. Eng. Sci. 69, 503–513 (2012)

    Article  Google Scholar 

  • Leppäjärvi, T., Kangas, J., Malinen, I., Tanskanen, J.: Mixture adsorption on zeolites applying the temperature-dependency approach. Chem. Eng. Sci. 89, 89–101 (2013)

    Article  Google Scholar 

  • Mason, G.: A model of adsorption–desorption hysteresis in which hysteresis is primarily developed by the interconnections in a network of pores. Proc. R. Soc. A 390(1798), 47–72 (1983)

    Article  CAS  Google Scholar 

  • Mason, G.: Determination of the pore-size distributions and of Vycor porous glass from adsorption-desorption hysteresis capillary condensation isotherms. Proc. R. Soc. A 415(1849), 453–486 (1988)

    Article  CAS  Google Scholar 

  • Mualem, Y.: Modified approach to capillary hysteresis based on a similarity hypothesis. Water Resour. Res. 9(5), 1324–1331 (1973)

    Article  Google Scholar 

  • Mualem, Y., Beriozkin, a.: General scaling rules of the hysteretic water retention function based on Mualems domain theory. Eur. J. Soil Sci. 60(4), 652–661 (2009)

    Article  Google Scholar 

  • Philip, J.R.: Similarity hypothesis for capillary hysteresis in porous materials. J. Geophys. Res. 69(8), 1553–1562 (1964)

    Google Scholar 

  • Rajniak, P., Yang, R.T.: A simple model and experiments for adsorption-desorption hysteresis: water vapor on silica gel. AIChE J. 39(5), 774–786 (1993)

    Article  CAS  Google Scholar 

  • Rajniak, P., Yang, R.T.: Hysteresis-dependent adsorption–desorption cycles: generalization for isothermal conditions. AIChE J. 40(6), 913–924 (1994)

    Article  CAS  Google Scholar 

  • Rajniak, P., Yang, R.T.: Unified network model for diffusion of condensable vapors in porous media. AIChE J. 42(2), 319–331 (1996)

    Article  CAS  Google Scholar 

  • Tompsett, Ga., Krogh, L., Griffin, D.W., Conner, W.C.: Hysteresis and scanning behavior of mesoporous molecular sieves. Langmuir 21(18), 8214–25 (2005)

    Article  CAS  Google Scholar 

  • Štěpánek, F., Kubíček, M., Marek, M., Šoóš, M., Rajniak, P., Yang, R.T.: On the modeling of PSA cycles with hysteresis-dependent isotherms. Chem. Eng. Sci. 55(2), 431–440 (2000)

    Article  Google Scholar 

Download references

Acknowledgments

Support of the Swiss National Science Foundation through grant NF 200021-130186 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Mazzotti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hefti, M., Mazzotti, M. Modeling water vapor adsorption/desorption cycles. Adsorption 20, 359–371 (2014). https://doi.org/10.1007/s10450-013-9573-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-013-9573-9

Keywords

Navigation