Skip to main content
Log in

On the hysteresis loop and equilibrium transition in slit-shaped ink-bottle pores

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Bin grand canonical Monte Carlo simulations have been carried out to study adsorption–desorption of argon at 87.3 K in a model ink-bottle mesoporous solid in order to investigate the interplay between the pore blocking process, controlled by the evaporation through the pore mouth via the meniscus separating the adsorbate and the bulk gas surroundings, and the cavitation process, governed by the instability of the stretched fluid (with a decrease in pressure) in the cavity. The evaporation mechanism switches from pore blocking to cavitation when the size of the pore neck is decreased, and is relatively insensitive to the neck length under conditions where cavitation is the controlling mechanism. We have applied the recently-developed Mid-Density scheme to determine the equilibrium branch of the hysteresis loop, and have found that, unlike ideal simple pores of constant size and infinite length, where the equilibrium transition is vertical, the equilibrium branch of an ink-bottle pore has three distinct sub-branches within the hysteresis loop. The first sub-branch is steep but continuous and is close to the desorption branch (which is typical for a pore with two open ends); this is associated with the equilibrium state in the neck. The third sub-branch is much steeper and is close to the adsorption branch (which is typical for either a pore with one end closed or a closed pore), and is associated with the equilibrium state in the cavity. The second sub-branch, connecting the other two sub-branches, has a more gradual slope. The domains of these three sub-branches depend on the relative sizes of the cavity and the neck, and their respective lengths. Our investigation of the effects of changing neck length clearly demonstrates that cavitation depends, not only on fluid properties, as frequently stated, but also on pore geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Allen, M.P., Tildesley, T.P.: Computer Simulation of Liquids. Clarendon, Oxford (1987)

    Google Scholar 

  • Bojan, M.J., Steele, W.A.: Computer simulation of physisorption on a heterogeneous surface. Surf. Sci. 199, L395–L402 (1988)

    Article  CAS  Google Scholar 

  • Bojan, M.J., Steele, W.A.: Computer-simulation of physisorbed Kr on a heterogeneous surface. Langmuir 5, 625–633 (1989)

    Article  CAS  Google Scholar 

  • Bojan, M.J., Steele, W.A.: Computer-simulation of physical adsorption on stepped surfaces. Langmuir 9, 2569–2575 (1993)

    Article  CAS  Google Scholar 

  • Cohan, L.H.: Hysteresis and the capillary theory of adsorption of vapors. J. Am. Chem. Soc. 66, 98–105 (1944)

    Article  CAS  Google Scholar 

  • Do, D.D., Do, H.D.: Effects of potential models in the vapor-liquid equilibria and adsorption of simple gases on graphitized thermal carbon black. Fluid Phase Equilib. 236, 169–177 (2005)

    Article  CAS  Google Scholar 

  • Do, D.D., Herrera, L.F., Do, H.D.: A new method to determine pore size and its volume distribution of porous solids having known atomistic configuration. J. Colloid and Interface Sci. 328, 110–119 (2008)

    Article  CAS  Google Scholar 

  • Edison, J.R., Monson, P.A.: Dynamic mean field theory of condensation and evaporation in model pore networks with variations in pore size. Microporous Mesoporous Mater. 154, 7–15 (2012)

    Article  CAS  Google Scholar 

  • Fan, C.Y., Do, D.D., Nicholson, D.: On the cavitation and pore blocking in slit-shaped ink-bottle pores. Langmuir 27, 3511–3526 (2011a)

    Article  CAS  Google Scholar 

  • Fan, C.Y., Do, D.D., Nicholson, D.: New Monte Carlo simulation of adsorption of gases on surfaces and in pores: a concept of multibins. J. Phys. Chem. B 115, 10509–10517 (2011b)

    Article  CAS  Google Scholar 

  • Fan, C.Y., Razak, M.A., Do, D.D., Nicholson, D.: On the Identification of the sharp spike in the heat curve for argon, nitrogen, and methane adsorption on graphite: reconciliation between computer simulation and experiments. J. Phys. Chem. C 116, 953–962 (2012)

    Article  CAS  Google Scholar 

  • Grant, S.M., Jaroniec, M.: Effect of cosolvent organic molecules on the adsorption and structural properties of soft-templated ordered mesoporous alumina. J. Colloid Interface Sci. 367, 129–134 (2012)

    Article  CAS  Google Scholar 

  • Grosman, A., Ortega, C.: Capillary condensation in porous materials—hysteresis and interaction mechanism without pore blocking/percolation process. Langmuir 24, 3977–3986 (2008)

    Article  CAS  Google Scholar 

  • Grosman, A., Ortega, C.: Cavitation in metastable fluids confined to linear mesopores. Langmuir 27, 2364–2374 (2011)

    Article  CAS  Google Scholar 

  • Hauschild, T., Prausnitz, J.M.: Monte-Carlo calculations for methane and argon over a wide-range of density and temperature, including the two-phase vapor-liquid region. Mol. Simul. 11, 177–185 (1993)

    Article  CAS  Google Scholar 

  • Horikawa, T., Hayashi, J., Muroyama, K.: Controllability of pore characteristics of resorcinol-formaldehyde carbon aerogel. Carbon 42, 1625–1633 (2004)

    Article  CAS  Google Scholar 

  • Horikawa, T., Do, D.D., Nicholson, D.: Capillary condensation of adsorbates in porous materials. Adv. Colloid Interface Sci. 169, 40–58 (2011)

    Article  CAS  Google Scholar 

  • Jorge, M., Seaton, N.A.: Molecular simulation of phase coexistence in adsorption in porous solids. Mol. Phys. 100, 3803–3815 (2002)

    Article  CAS  Google Scholar 

  • Kierlik, E., Monson, P.A., Rosinberg, M.L., Tarjus, G.: Adsorption hysteresis and capillary condensation in disordered porous solids: a density functional study. J. Phys.-Condens. Mater 14, 9295–9315 (2002)

    Article  CAS  Google Scholar 

  • Klomkliang, N., Do, D.D., Nicholson, D.: On the hysteresis and equilibrium phase transition of argon and benzene adsorption in finite slit pores: Monte Carlo vs Bin-Monte Carlo. Chem. Eng. Sci. 87, 327–337 (2013)

    Article  CAS  Google Scholar 

  • Kruk, M., Jaroniec, M.: Argon adsorption at 77 K as a useful tool for the elucidation of pore connectivity in ordered materials with large cagelike mesopores. Chem. Mater. 15, 2942–2949 (2003)

    Article  CAS  Google Scholar 

  • Libby, B., Monson, P.A.: Adsorption/desorption hysteresis in inkbottle pores: a density functional theory and Monte Carlo simulation study. Langmuir 20, 4289–4294 (2004)

    Article  CAS  Google Scholar 

  • Liu, H., Zhang, L., Seaton, N.A.: Sorption hysteresis as a probe of pore structure. Langmuir 9(10), 2576–2582 (1993)

    Article  CAS  Google Scholar 

  • Liu, J., Zhang, L., Yang, Q., Li, C.: Structural control of mesoporous silicas with large nanopores in a mild buffer solution. Microporous Mesoporous Mater. 116, 330–338 (2008)

    Article  CAS  Google Scholar 

  • Liu, Z.J., Herrera, L., Nguyen, V.T., Do, D.D., Nicholson, D.: A Monte Carlo scheme based on Mid-Density in a hysteresis loop to determine equilibrium phase transition. Mol. Simul. 37, 932–939 (2011)

    Article  CAS  Google Scholar 

  • Liu, Z.J., Do, D.D., Nicholson, D.: A thermodynamic study of the Mid-Density scheme to determine the equilibrium phase transition in cylindrical pores. Mol. Simul. 38, 189–199 (2012)

    Article  CAS  Google Scholar 

  • Lu, A.H., Schüth, F.: Nanocasting pathways to create ordered mesoporous solids. C. R. Chim. 8, 609–620 (2005)

    Article  CAS  Google Scholar 

  • Lu, A.H., Schüth, F.: Nanocasting: a versatile strategy for creating nanostructured porous materials. Adv. Mater. 18, 1793–1805 (2006)

    Article  CAS  Google Scholar 

  • Mason, G.: A model of adsorption–desorption hysteresis in which hysteresis is primarily developed by the interconnections in a network of pores. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 390: p. 47-72 (1983)

  • Mayagoitia, V., Rojas, F., Kornhauser, I., Pérez-Aguilar, H.: Modeling of porous media and surface structures: their true essence as networks. Langmuir 13, 1327–1331 (1997)

    Article  CAS  Google Scholar 

  • McBain, J.W.: An explanation of hysteresis in the hydration and dehydration of gels. J. Am. Chem. Soc. 57, 699–700 (1935)

    Article  CAS  Google Scholar 

  • Morishige, K.: Adsorption hysteresis in ordered mesoporous silicas. Adsorpt.-J. Int. Adsorpt. Soc. 14, 157–163 (2008)

    Article  CAS  Google Scholar 

  • Morishige, K., Ito, M.: Capillary condensation of nitrogen in MCM-41 and SBA-15. J. Chem. Phys. 117, 8036–8041 (2002)

    Article  CAS  Google Scholar 

  • Morishige, K., Tateishi, N.: Adsorption hysteresis in ink-bottle pore. J. Chem. Phys. 119, 2301–2306 (2003)

    Article  CAS  Google Scholar 

  • Morishige, K., Yasuki, T.: Large-pore cagelike silica with necks of molecular dimensions. J. Phys. Chem. C 114, 10910–10916 (2010)

    Article  CAS  Google Scholar 

  • Morishige, K., Yoshida, K.: Neck size of ordered cage-type mesoporous silica FDU-12 and origin of gradual desorption. J. Phys. Chem. C 114, 7095–7101 (2010)

    Article  CAS  Google Scholar 

  • Morishige, K., Tateishi, N., Fukuma, S.: Capillary condensation of nitrogen in MCM-48 and SBA-16. J. Phys. Chem. B 107, 5177–5181 (2003)

    Article  CAS  Google Scholar 

  • Morishige, K., Tateishi, M., Hirose, F., Aramaki, K.: Change in desorption mechanism from pore blocking to cavitation with temperature for nitrogen in ordered silica with cagelike pores. Langmuir 22, 9220–9224 (2006)

    Article  CAS  Google Scholar 

  • Neimark, A.V., Vishnyakov, A.: Gauge cell method for simulation studies of phase transitions in confined systems. Phys. Rev. E 62, 4611–4622 (2000)

    Article  CAS  Google Scholar 

  • Neimark, A.V., Ravikovitch, P.I., Vishnyakov, A.: Bridging scales from molecular simulations to classical thermodynamics: density functional theory of capillary condensation in nanopores. J. Phys.-Condens Matter 15, 347–365 (2003)

    Article  CAS  Google Scholar 

  • Nguyen, P.T.M., Do, D.D., Nicholson, D.: On the cavitation and pore blocking in cylindrical pores with simple connectivity. J. Phys. Chem. B 115, 12160–12172 (2011)

    Article  CAS  Google Scholar 

  • Nguyen, P., Fan, C., Do, D.D., Nicholson, D.: On the cavitation-like pore blocking in ink-bottle pore. J. Phys. Chem. C 117, 5475 (2013)

    Article  CAS  Google Scholar 

  • Nicholson, D.: Capillary models for porous media—part 2: sorption desorption hysteresis in three dimensional networks. Trans. Faraday Soc. 64, 3416–3424 (1968)

    Article  CAS  Google Scholar 

  • Peterson, B.K., Gubbins, K.E.: Phase transitions in a cylindrical pore: grand canonical Monte-Carlo, mean field-theory and the Kelvin equation. Mol. Phys. 62, 215–226 (1987)

    Article  CAS  Google Scholar 

  • Peterson, B.K., Gubbins, K.E., Heffelfinger, G.S., Marconi, U.M.B., Vanswol, F.: Lennard-Jones fluids in cylindrical pores: nonlocal theory and computer-simulation. J. Chem. Phys. 88, 6487–6500 (1988)

    Article  CAS  Google Scholar 

  • Puibasset, J.: Counting metastable states within the adsorption/desorption hysteresis loop: a molecular simulation study of confinement in heterogeneous pores. J. Chem. Phys. 133, 104701–104714 (2010)

    Article  Google Scholar 

  • Rasmussen, C.J., Vishnyakov, A., Thommes, M., Smarsly, B.M., Kleitz, F., Neimark, A.V.: Cavitation in metastable liquid nitrogen confined to nanoscale pores. Langmuir 26, 10147–10157 (2010)

    Article  CAS  Google Scholar 

  • Rasmussen, C.J., Gor, G.Y., Neimark, A.V.: Monte Carlo simulation of cavitation in pores with nonwetting defects. Langmuir 28, 4702–4711 (2012)

    Article  CAS  Google Scholar 

  • Ravikovitch, P.I., Neimark, A.V.: Experimental confirmation of different mechanisms of evaporation from ink-bottle type pores: equilibrium, pore blocking, and cavitation. Langmuir 18, 9830–9837 (2002)

    Article  CAS  Google Scholar 

  • Reichenbach, C., Kalies, G., Enke, D., Klank, D.: Cavitation and pore blocking in nanoporous glasses. Langmuir 27, 10699–10704 (2011)

    Article  CAS  Google Scholar 

  • Rigby, S.P., Fletcher, R.S.: Experimental evidence for pore blocking as the mechanism for nitrogen sorption hysteresis in a mesoporous material. J. Phys. Chem. B 108, 4690–4695 (2004)

    Article  CAS  Google Scholar 

  • Rowley, L.A., Nicholson, D., Parsonage, N.G.: Monte-Carlo grand canonical ensemble calculation in a gas-liquid transition region for 12-6 argon. J. Comput. Phys. 17, 401–414 (1975)

    Article  CAS  Google Scholar 

  • Sahu, D.R., Hong, L.Y., Wang, S.C., Huang, J.L.: Synthesis, analysis and characterization of ordered mesoporous TiO2/SBA-15 matrix: effect of calcination temperature. Microporous Mesoporous Mater. 117, 640–649 (2009)

    Article  CAS  Google Scholar 

  • Sarkisov, L., Monson, P.A.: Modeling of adsorption and desorption in pores of simple geometry using molecular dynamics. Langmuir 17, 7600–7604 (2001)

    Article  CAS  Google Scholar 

  • Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., Siemieniewska, T.: Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 57, 603–619 (1985)

    Article  CAS  Google Scholar 

  • Steele, W.A.: Physical interaction of gases with crystalline solids—1 Gas-solid energies and properties of isolated adsorbed atoms. Surf. Sci. 36, 317–352 (1973)

    Article  CAS  Google Scholar 

  • Thommes, M., Smarsly, B., Groenewolt, M., Ravikovitch, P.I., Niemark, A.V.: Adsorption hysteresis of nitrogen and argon in pore networks and characterization of novel micro- and mesoporous silicas. Langmuir 22, 756–764 (2006)

    Article  CAS  Google Scholar 

  • Vishnyakov, A., Neimark, A.V.: Studies of liquid-vapor equilibria, criticality, and spinodal transitions in nanopores by the gauge cell Monte Carlo simulation method. J. Phys. Chem. B 105, 7009–7020 (2001)

    Article  CAS  Google Scholar 

  • Vishnyakov, A., Neimark, A.V.: Monte Carlo simulation test of pore blocking effects. Langmuir 19, 3240–3247 (2003a)

    Article  CAS  Google Scholar 

  • Vishnyakov, A., Neimark, A.V.: Nucleation of liquid bridges and bubbles in nanoscale capillaries. J. Chem. Phys. 119, 9755–9764 (2003b)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was made possible by the Australian Research Council and Suranaree University of Technology whose support are gratefully acknowledged. We also acknowledge the support from the Office of the Commission on Higher Education of Thailand in the form of Ph.D. scholarship to NK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. Do.

Appendix

Appendix

The interaction of a particle and a strip which is finite in one direction (y-direction) and infinite in the other (x-direction) (shown in Fig. 18) is calculated from the Bojan–Steele equation (Bojan and Steele 1988, 1989, 1993):

$$U_{i,s} = \sum\limits_{a = 1}^{M} {2\pi \varepsilon_{i}^{a,s} \rho_{s} (\sigma_{i}^{a,s} )^{2} \left\{ {\left[ {U_{rep} (y_{i}^{a, + } ,z_{i}^{a} ) - U_{rep} (y_{i}^{a, - } ,z_{i}^{a} )} \right]} \right.} \;\; - \left. {\left[ {U_{att} (y_{i}^{a, + } ,z_{i}^{a} ) - U_{att} (y_{i}^{a, - } ,z_{i}^{a} )} \right]} \right\}$$
(6)

where

$$y_{i}^{a, + } = \frac{L}{2} - y_{i}^{a} ;\,\quad y_{i}^{a, - } = - \frac{L}{2} - y_{i}^{a}$$
(7)

The repulsive and attractive terms on the right hand side of Eq. (6) are given by:

$$\begin{aligned} U_{\text{rep}} (y,z) = & & \frac{y}{{\sqrt {y^{2} + z^{2} } }}\left\{ {\frac{1}{5}\left( {\frac{{\sigma_{i}^{a,s} }}{z}} \right)} \right.^{10} + \frac{1}{10}\frac{{(\sigma_{i}^{a,s} )^{10} }}{{z^{8} (y^{2} + z^{2} )}} \\ + \frac{3}{40}\frac{{(\sigma_{i}^{a,s} )^{10} }}{{z^{6} (y^{2} + z^{2} )^{2} }} + \frac{1}{16}\frac{{(\sigma_{i}^{a,s} )^{10} }}{{z^{4} (y^{2} + z^{2} )^{3} }} \\ \left. { + \frac{7}{128}\frac{{(\sigma_{i}^{a,s} )^{10} }}{{z^{2} (y^{2} + z^{2} )^{4} }}} \right\} \\ \end{aligned}$$
(8)
$$U_{\text{att}} (y,z) = \frac{y}{{\sqrt {y^{2} + z^{2} } }}\left\{ {\frac{1}{2}\left( {\frac{{\sigma_{i}^{a,s} }}{z}} \right)^{4} + \frac{1}{4}\frac{{(\sigma_{i}^{a,s} )^{4} }}{{z^{2} (y^{2} + z^{2} )}}} \right\}$$
(9)

where \(z_{i}^{a}\) is the distance of site a of molecule i from the graphite surface, \(\varepsilon_{i}^{a,s}\) and \(\sigma_{i}^{a,s}\)are the adsorptive-graphite interaction potential well-depth and intermolecular collision diameter respectively, and ρ s is the surface density (taken as 38.2 nm−2 in this study). The cross parameters, \(\sigma_{i}^{a,s}\)and \(\varepsilon_{i}^{a,s}\)can be determined by the Lorentz–Berthelot mixing rules: \(\sigma_{i}^{a,s} = (\sigma_{i}^{a,a} + \sigma_{{}}^{s} )/2\) and \(\varepsilon_{i}^{a,s} = (\varepsilon_{i}^{a,a} \varepsilon_{{}}^{s} )^{1/2}\) where the parameters for a carbon atom in a graphene layer are σ s = 0.34 nm and ε s /k B  = 28.0 K.The potential equation energy in Eqs. (6)–(9) is valid for any positions around the strip, except z a i  → 0, and in such cases we use the following Taylor series expansion:

$$\begin{gathered} \frac{{U_{i,s} }}{{2\pi K\rho_{s} }} = \sum\limits_{a = 1}^{M} {\varepsilon_{i}^{a,s} (\sigma_{i}^{a,s} )^{2} \left( {\,\,\,\left\{ {\frac{63}{1280}\left[ {\left( {\frac{{\sigma_{i}^{a,s} }}{{y_{i}^{a, - } }}} \right)^{10} - \left( {\frac{{\sigma_{i}^{a,s} }}{{y_{i}^{a, + } }}} \right)^{10} } \right]} \right.} \right.} \\ - \left. {\frac{3}{16}\left[ {\left( {\frac{{\sigma_{i}^{a,s} }}{{y_{i}^{a, - } }}} \right)^{4} - \left( {\frac{{\sigma_{i}^{a,s} }}{{y_{i}^{a, + } }}} \right)^{4} } \right]} \right\} \\ - \left( {\frac{{z_{i}^{a} }}{{\sigma_{i}^{a,s} }}} \right)^{2} \left\{ {\frac{231}{1024}\left[ {\left( {\frac{{\sigma_{i}^{a,s} }}{{y_{i}^{a, - } }}} \right)^{12} - \left( {\frac{{\sigma_{i}^{a,s} }}{{y_{i}^{a, + } }}} \right)^{12} } \right]} \right. \\ - \left. {\frac{5}{16}\left[ {\left( {\frac{{\sigma_{i}^{a,s} }}{{y_{i}^{a, - } }}} \right)^{6} - \left( {\frac{{\sigma_{i}^{a,s} }}{{y_{i}^{a, + } }}} \right)^{6} } \right]} \right\} \\ + \left( {\frac{{z_{i}^{a} }}{{\sigma_{i}^{a,s} }}} \right)^{4} \left\{ {\frac{1287}{2048}\left[ {\left( {\frac{{\sigma_{i}^{a,s} }}{{y_{i}^{a, - } }}} \right)^{14} - \left( {\frac{{\sigma_{i}^{a,s} }}{{y_{i}^{a, + } }}} \right)^{14} } \right]} \right. \\ - \left. {\frac{105}{256}\left[ {\left( {\frac{{\sigma_{i}^{a,s} }}{{y_{i}^{a, - } }}} \right)^{8} - \left( {\frac{{\sigma_{i}^{a,s} }}{{y_{i}^{a, + } }}} \right)^{8} } \right]} \right\} \\ - \left( {\frac{{z_{i}^{a} }}{{\sigma_{i}^{a,s} }}} \right)^{6} \left\{ {\frac{45045}{32768}\left[ {\left( {\frac{{\sigma_{i}^{a,s} }}{{y_{i}^{a, - } }}} \right)^{16} - \left( {\frac{{\sigma_{i}^{a,s} }}{{y_{i}^{a, + } }}} \right)^{16} } \right]} \right. \\ - \left. {\frac{63}{128}\left[ {\left( {\frac{{\sigma_{i}^{a,s} }}{{y_{i}^{a, - } }}} \right)^{10} - \left( {\frac{{\sigma_{i}^{a,s} }}{{y_{i}^{a, + } }}} \right)^{10} } \right]} \right\} \\ + \left( {\frac{{z_{i}^{a} }}{{\sigma_{i}^{a,s} }}} \right)^{8} \left\{ {\frac{85085}{32768}\left[ {\left( {\frac{{\sigma_{i}^{a,s} }}{{y_{i}^{a, - } }}} \right)^{18} - \left( {\frac{{\sigma_{i}^{a,s} }}{{y_{i}^{a, + } }}} \right)^{18} } \right]} \right. \\ \left. { - \left. {\frac{1155}{2048}\left[ {\left( {\frac{{\sigma_{i}^{a,s} }}{{y_{i}^{a, - } }}} \right)^{12} - \left( {\frac{{\sigma_{i}^{a,s} }}{{y_{i}^{a, + } }}} \right)^{12} } \right]} \right\} + O(z/\sigma_{i}^{a,s} )^{10} } \right) \\ \end{gathered}$$
(10)

where K = 1 for positive values of \(y_{i}^{a, + }\)and \(y_{i}^{a, - }\), K = −1 for negative values of \(y_{i}^{a, + }\) and \(y_{i}^{a, - }\).

Fig. 18
figure 18

Configuration of a finite strip

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klomkliang, N., Do, D.D. & Nicholson, D. On the hysteresis loop and equilibrium transition in slit-shaped ink-bottle pores. Adsorption 19, 1273–1290 (2013). https://doi.org/10.1007/s10450-013-9569-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-013-9569-5

Keywords

Navigation