Skip to main content
Log in

Fine tuning the surface acidity of titanate nanostructures

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

The effect of protonation on the surface acidic properties of titanate nanowires (TiONWs) was investigated. Nanowires were synthesized by the alkali hydrothermal method which resulted in one dimensional nanostructures of large external surface area and well-defined lamellar interlayer structure. The Na+/H+ ratio in the structure can be tuned by ion-exchange. Our aim was to characterize the morphology of the as-synthesized nanostructures by HRTEM and SEM measurements and assess their surface acidity using in situ infrared spectroscopic measurements and temperature programmed desorption. It was found that the numbers of Lewis and Brönsted acidic sites in the Na-form and the H-form of the TiONWs is different. The ratio and the nature of acidic sites can be tuned by the ion exchange process. The wire-like morphology and the tunable acidity are features of titanate nanowires that may render them a promising material in various heterogeneous catalytic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bezrodna, T., Puchkovska, G., Shimanovska, V., Chashechnikova, I., Khalyavka, T., Baran, J.: Pyridine–TiO2 surface interaction as a probe for surface active centers analysis. Appl. Surf. Sci. 214, 222–231 (2003)

    Article  CAS  Google Scholar 

  • Busca, G.: Spectroscopic characterization of the acid properties of metal oxide catalysts. Catal. Today 41, 191–206 (1998)

    Article  CAS  Google Scholar 

  • Byrne, M.T., McCarthy, J.E., Bent, M., Blake, R., Gunko, Y.K., Horvath, E., Konya, Z., Kukovecz, A., Kiricsi, I., Coleman, J.N.: Chemical functionalisation of titania nanotubes and their utilisation for the fabrication of reinforced polystyrene composites. J. Mater. Chem. 17, 2351–2358 (2007)

    Article  CAS  Google Scholar 

  • Cook, D.: Vibrational spectra of pyridinium salts. Can. J. Chem. 39, 2009–2024 (1961)

    Article  CAS  Google Scholar 

  • Darányi, M., Csesznok, T., Kukovecz, A., Konya, Z., Kiricsi, I., Ajayan, P.M., Vajtai, R.: Layer-by-layer assembly of TiO2 nanowire/carbon nanotube films and characterization of their photocatalytic activity. Nanotechnology 22, 195701 (2011)

    Article  Google Scholar 

  • Ertl, G., Knötzinger, H., Weitkamp, J.: Handbook of Heterogenous Catalysis. VCH Verlagsgesellschaf mbH, Weinheim (1997)

    Book  Google Scholar 

  • Gonzalez Pena, L.F., Sad, M.E., Padro, C.L., Apesteguia, C.R.: Study of the alkylation of phenol with methanol on Zn(H)-exchanged NaY zeolites. Catal. Lett. 141, 939–947 (2011)

    Article  CAS  Google Scholar 

  • Halász, J., Kónya, Z., Fudala, A., Béres, A., Kiricsi, I.: Indium and gallium containing ZSM-5 zeolites: acidity and catalytic activity in propane transformation. Catal. Today 31, 293–304 (1996)

    Article  Google Scholar 

  • Hodos, M., Horvath, E., Haspel, H., Kukovecz, A., Konya, Z., Kiricsi, I.: Photo sensitization of ion-exchangeable titanate nanotubes by CdS nanoparticles. Chem. Phys. Lett. 399, 512–515 (2004)

    Article  CAS  Google Scholar 

  • Hodos, M., Kónya, Z., Kiricsi, I.: Catalysis by pre-prepared platinum nanoparticles supported on trititanate nanotubes. React. Kinet. Catal. Lett. 84, 341–350 (2005)

    Article  Google Scholar 

  • Horváth, E., Kukovecz, A., Konya, Z., Kiricsi, I.: Hydrothermal conversion of self-assembled titanate nanotubes into nanowires in a revolving autoclave. Chem. Mater. 19, 927–931 (2007)

    Article  Google Scholar 

  • Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T., Nihara, K.: Formation of titanium oxide nanotubes. Langmuir 14, 3160–3163 (1998)

    Article  CAS  Google Scholar 

  • Kitano, M., Nakajima, K., Kondo, J.N., Hayashi, S., Hara, M.: Protonated titanate nanotubes as solid acid catalyst. J. Am. Chem. Soc. 132, 6622–6623 (2010)

    Article  CAS  Google Scholar 

  • Kónya, Z., Hannus, I., Kiricsi, I.: Infrared spectroscopic study of adsorption and reactions of methyl chloride on acidic, neutral and basic zeolites. Appl. Catal. B Environ. 8, 391–404 (1996)

    Google Scholar 

  • Kukovecz, A., Hodos, M., Horvath, E., Radnoczi, G., Konya, Z., Kiricsi, I.: Oriented crystal growth model explains the formation of titania nanotubes. J. Phys. Chem. B 109, 17781–17783 (2005)

    Article  CAS  Google Scholar 

  • Kukovecz, A., Potari, G., Oszko, A., Konya, Z., Erdohelyi, A., Kiss, J.: Probing the interaction of Au, Rh and bimetallic Au–Rh clusters with the TiO2 nanowire and nanotube support. Surf. Sci. 605, 1048–1055 (2011)

    Article  CAS  Google Scholar 

  • Li, J.R., Tang, Z.L., Zhang, Z.T.: Layered hydrogen titanate nanowires with novel lithium intercalation properties. Chem. Mater. 17, 5848–5855 (2005)

    Article  CAS  Google Scholar 

  • Ma, R., Bando, Y., Sasaki, T.: Directly rolling nanosheets into nanotubes. J. Phys. Chem. B 108, 2115–2119 (2004)

    Article  CAS  Google Scholar 

  • Martra, G.: Lewis acid and base sites at the surface of microcrystalline TiO2 anatase: relationships between surface morphology and chemical behavior. Appl. Catal. A Gen. 200, 275–285 (2000)

    Article  CAS  Google Scholar 

  • Mor, G.K., Shankar, K., Paulose, M., Varghese, O.K., Grimes, C.A.: Enhanced photocleavage of water using titania nanotube arrays. Nano Lett. 5, 191–195 (2005)

    Article  CAS  Google Scholar 

  • Ohsaki, Y., Masaki, N., Kitamura, T., Wada, Y., Okamoto, T., Sekino, T., Niihara, K., Yanagida, S.: Dye-sensitized TiO2 nanotube solar cells: fabrication and electronic characterization. Phys. Chem. Chem. Phys. 7, 4157–4163 (2005)

    Article  CAS  Google Scholar 

  • Parry, E.P.: An infrared study of pyridine adsorbed on acidic solids. Characterization of surface acidity. J. Catal. 2, 371–379 (1963)

    Article  CAS  Google Scholar 

  • Peng, C.W., Richard-Plouet, M., Ke, T.Y., Lee, C.Y., Chiu, H.T., Marhic, C., Puzenat, E., Lemoigno, F., Brohan, L.: Chimie douce route to sodium hydroxo titanate nanowires with modulated structure and conversion to highly photoactive titanium dioxides. Chem. Mater. 20, 7228–7236 (2008)

    Article  CAS  Google Scholar 

  • Poudel, B., Wang, W., Dames, C., Huang, J., Kunwar, S., Wang, D., Barnerjee, D., Chen, G., Ren, Z.: Formation of crystallized titania nanotubes and their transformation into nanowires. Nanotechnology 16, 1935 (2005)

    Article  CAS  Google Scholar 

  • Sasaki, T., Ma, R., Nakano, S., Yamauchi, S., Watanabe, M.: Fabrication of titanium dioxide thin flakes and their porous aggregate. Chem. Mater. 9, 602–608 (1997)

    Article  CAS  Google Scholar 

  • Tsai, C., Teng, H.: Structural features of nanotubes synthesized from NaOH treatment on TiO2 with different post-treatments. Chem. Mater. 18, 367–373 (2006)

    Article  CAS  Google Scholar 

  • Toledo-Antonio, J.A., Cortes-Jacome, M.A., Navarrete, J., Angeles-Chavez, C., Lopez-Salinas, E., Rendon-Rivera, A.: Morphology induced CO, pyridine and lutidine adsorption sites on TiO2: Nanoparticles, nanotubes and nanofibers. Catal. Today 155, 247–254 (2010)

    Article  CAS  Google Scholar 

  • Toth, M., Kiss, J., Oszko, A., Potari, G., Laszlo, B., Erdohelyi, A.: Hydrogenation of carbon dioxide on Rh, Au and Au–Rh bimetallic clusters supported on titanate nanotubes, nanowires and TiO2. Top. Catal. 55, 747–756 (2012)

    Article  CAS  Google Scholar 

  • Wu, M.C., Hiltunen, J., Sapi, A., Avila, A., Larsson, W., Liao, H.C., Huuhtanen, M., Toth, G., Shchukarev, A., Laufer, N., Kukovecz, A., Konya, Z., Mikkola, J.P., Keiski, R., Su, W.F., Chen, Y.F., Jantunen, H., Ajayan, P.M., Vajtai, R., Kordas, K.: Nitrogen-doped anatase nanofibers decorated with noble metal nanoparticles for photocatalytic production of hydrogen. ACS Nano 5, 5025–5030 (2011)

    Article  CAS  Google Scholar 

  • Yang, D.J., Sarina, S., Zhu, H.Y., Liu, H.W., Zheng, Z.F., Xie, M.X., Smith, S.V., Komarneni, S.: Capture of radioactive cesium and iodide ions from water by using titanate nanofibers and nanotubes. Angew. Chem. Int. Ed. 50, 10594–10598 (2011)

    Article  CAS  Google Scholar 

  • Yang, D.J., Zheng, Z.F., Zhu, H.Y., Liu, H.W., Gao, X.P.: Titanate nanofibers as intelligent absorbents for the removal of radioactive ions from water. Adv. Mater. 20, 2777–2781 (2008)

    Article  CAS  Google Scholar 

  • Zhang, Y.Y., Fu, W.Y., Yang, H.B., Li, M.H., Li, Y.X., Zhao, W.Y., Sun, P., Yuan, M.X., Ma, D., Liu, B.B., Zou, G.T.: A novel humidity sensor based on Na2Ti3O7 nanowires with rapid response-recovery. Sens. Actuators B Chem. 135, 317–321 (2008)

    Article  CAS  Google Scholar 

  • Zhao, B., Chen, F., Liu, H., Zhang, J.: Mesoporous TiO2-B nanowires synthesized from tetrabutyl titanate. J. Phys. Chem. Solids 72, 201–206 (2011)

    Article  CAS  Google Scholar 

  • Zhu, G.N., Wang, Y.G., Xia, Y.Y.: Ti-based compounds as anode materials for Li-ion batteries. Energy Environ. Sci. 5, 6652–6667 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support of the TÁMOP-4.2.2.A-11/1/KONV-2012-0047 and TÁMOP-4.2.2.A-11/1/KONV-2012-0060 projects and the EC FP7 INCO “NAPEP” network is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Kónya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Madarász, D., Szenti, I., Nagy, L. et al. Fine tuning the surface acidity of titanate nanostructures. Adsorption 19, 695–700 (2013). https://doi.org/10.1007/s10450-013-9494-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-013-9494-7

Keywords

Navigation