Skip to main content
Log in

Behavior of ethylene and ethane within single-walled carbon nanotubes. 1-Adsorption and equilibrium properties

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Endohedral adsorption properties of ethylene and ethane onto single-walled carbon nanotubes were investigated using a united atom (2CLJQ) and a fully atomistic (AA-OPLS) force fields, by Grand Canonical Monte Carlo and Molecular Dynamics techniques. Pure fluids were studied at room temperature, T=300 K, and in the pressure ranges 4×10−4<p<47.1 bar (C2H4) and 4×10−4<p<37.9 bar (C2H6). In the low pressure region, isotherms differ quantitatively depending on the intermolecular potential used, but show the same qualitative features. Both potentials predict that ethane is preferentially adsorbed at low pressures, and the opposite behavior was observed at high loadings. Isosteric heats of adsorption and estimates of low pressure Henry’s constants, confirmed that ethane adsorption is the thermodynamically favored process at low pressures. Binary mixtures of C2H4/C2H6 were studied under several (p,T) conditions and the corresponding selectivities towards ethane, S, were evaluated. Small values of S<4 were found in all cases studied. Nanotube geometry plays a minor role on the adsorption properties, which seem to be driven at lower pressures primarily by the larger affinity of the alkane towards the carbon surface and at higher pressures by molecular volume and packing effects. The fact that the selectivity towards ethane is similar to that found earlier on carbon slit pores and larger diameter nanotubes points to the fact that the peculiar 1-D geometry of the nanotubes provides no particular incentive for the adsorption of either species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackerman, D.M., Skoulidas, A.I., Sholl, D.S., Johnson, J.K.: Diffusivities of Ar and Ne in carbon nanotubes. Mol. Sim. 29, 677–684 (2003)

    Article  CAS  Google Scholar 

  • Agnihotri, S., Mota, J.P.B., Rostam-Abadi, M., Rood, M.J.: Theoretical and experimental investigation of morphology and temperature effects on adsorption of organic vapors in single-walled carbon nanotubes. J. Phys. Chem. B 110, 7640–7647 (2006)

    Article  CAS  Google Scholar 

  • Al-Baghli, N.A., Loughlin, K.F.: Binary and ternary adsorption of methane, ethane, and ethylene on titanosilicate ETS-10 zeolite. J. Chem. Eng. Data 51, 248–254 (2006)

    Article  CAS  Google Scholar 

  • Alba-Simionesco, C., Coasne, B., Dosseh, G., Gubbins, K.E., Radhakrishnan, R., Sliwinska-Bartkowiac, M.: Effects of confinement on freezing and melting. J. Phys., Condens. Matter 18, R15–R68 (2006)

    Article  CAS  Google Scholar 

  • Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Clarendon Press, Oxford (1990)

    Google Scholar 

  • Bekyarova, E., Murata, K., Yudasaka, M., Kasuya, D., Iijima, S., Tanaka, H., Kahoh, H., Kaneko, K.: Single-wall nanostructured carbon for methane storage. J. Phys. Chem. B 20, 4681–4684 (2003)

    Google Scholar 

  • Bethune, D.S., Kiang, C.H., Vries, M.S.D., Gorman, G., Savoy, R., Vasquez, J., Beyers, R.: Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363, 605–607 (1993)

    Article  CAS  Google Scholar 

  • Carrero-Mantilla, J., Llano-Restrepo, M.: Further validation of a set of quadrupolar potential models for ethylene and propylene from the prediction of some binary mixture vapor–liquid equilibria by Gibbs-ensemble molecular simulation. Mol. Sim. 29, 549–554 (2003)

    Article  CAS  Google Scholar 

  • Chacin, A., Vazquez, J.M., Müller, E.A.: Molecular simulation of the Joule-Thomson inversion curve of carbon monoxide. F. Phase Eq. 165, 147–155 (1999)

    Article  CAS  Google Scholar 

  • Choi, B.U., Choi, D.-K., Lee, Y.-W., Lee, B.-K., Kim, S.-H.: Adsorption equilibria of methane, ethane, ethylene, nitrogen, and hydrogen onto activated carbon. J. Chem. Eng. Data 48, 603–607 (2003)

    Article  CAS  Google Scholar 

  • Cracknell, R.F., Nicholson, D.: Grand canonical Monte Carlo study of Lennard-Jones mixtures in slit pores. Part 3. Mixtures of two molecular fluids: ethane and propane. J. Chem. Soc., Faraday Trans. 90, 1497–1493 (1994)

    Article  Google Scholar 

  • Curbelo, S., Müller, E.A.: Modelling of ethane/ethylene separation using microporous carbon. Ads. Sci. Tech. 23, 855–865 (2005)

    Article  CAS  Google Scholar 

  • Da Silva, F.A., Rodrigues, A.E.: Adsorption equilibria and kinetics for propylene and propane over 13X and 4A zeolite pellets. Ind. Eng. Chem. Res. 38, 2051–2057 (1999)

    Article  Google Scholar 

  • Darkrim, F.L., Malbrunot, P., Tartaglia, G.P.: Review of hydrogen storage by adsorption in carbon nanotubes. Int. J. Hyd. Energy 27, 193–202 (2002)

    Article  CAS  Google Scholar 

  • Daubert, T.E., Danner, R.P.: Physical and Thermodynamic Properties of Pure Chemicals, 4th edn. Taylor and Francis, London (1994)

    Google Scholar 

  • Do, D.D.: Adsorption Analysis and Kinetics. Imperial College Press, London (1998)

    Google Scholar 

  • Do, D.D., Do, H.D.: Effects of potential models on the adsorption of ethane and ethylene on graphitized thermal carbon black. Study of two-dimensional critical temperature and isosteric heat versus loading. Langmuir 25, 10889–10899 (2004a)

    Article  CAS  Google Scholar 

  • Do, D.D., Do, H.D.: Adsorption of ethylene on graphitized thermal carbon black and in slit pores: a computer simulation study. Langmuir 20, 7103–7116 (2004b)

    Article  CAS  Google Scholar 

  • Do, D.D., Do, H.D.: Cooperative and competitive adsorption of ethylene, ethane, nitrogen and argon on graphitized carbon black and in slit pores. Adsorption 11, 35–50 (2005)

    Article  CAS  Google Scholar 

  • Düren, T., Keil, F.J., Seaton, N.A.: Molecular simulation of adsorption and transport diffusion of model fluids in carbon nanotubes. Mol. Phys. 100, 3741–3751 (2002)

    Article  CAS  Google Scholar 

  • Fagan, J.A., Simpson, J.R., Bauer, B.J., De Paoli Lacerda, S.H., Becker, M.L., Chun, J., Migler, K.B., Walker, A.R.H., Hobbie, E.K.: Length-dependent optical effects in single-wall carbon nanotubes. J. Am. Chem. Soc. 129, 10607–10612 (2007)

    Article  CAS  Google Scholar 

  • Fernández, G.A., Vrabec, J., Hasse, H.: Shear viscosity and thermal conductivity of quadrupolar real fluids from molecular simulation. Mol. Sim. 31, 787–793 (2005a)

    Article  CAS  Google Scholar 

  • Fernández, G.A., Vrabec, J., Hasse, H.: Self-diffusion and binary Maxwell–Stefan diffusion coefficients of quadrupolar real fluids from molecular simulation. Int. J. Therm. 26, 1389–1407 (2005b)

    Article  CAS  Google Scholar 

  • Frenkel, D., Smit, B.: Understanding Molecular Simulation, 2nd edn. Academic Press, San Diego (2002)

    Google Scholar 

  • Funk, S., Burghaus, U., White, B., O’Brien, S., Turro, N.J.: Adsorption dynamics of alkanes on single-wall carbon nanotubes: a molecular beam scattering study. J. Phys. Chem. C 111, 8043–8049 (2007)

    CAS  Google Scholar 

  • Gelb, L.D., Gubbins, K.E., Radhakrishnan, R., Sliwinska-Bartkowiak, M.: Phase separation in confined systems. Rep. Prog. Phys. 62, 1573–1659 (1999)

    Article  CAS  Google Scholar 

  • Gray, C.G., Gubbins, K.E.: Theory of Molecular Fluids. Clarendon Press, Oxford (1984)

    Google Scholar 

  • Guo, J., Bao, X.T., Gui, B., Xiang, S.X., Li, S.R., Huang, X.F., Heslop, M.J.: Co-adsorption equilibrium of ethane and ethylene mixture onto various activated carbons. Paper presented in FOA9 Naxos, Italy, 2007

  • Heyden, A., Düren, T., Keil, F.J.: Study of molecular shape and non-ideality effects on mixture adsorption isotherms of small molecules in carbon nanotubes: a grand canonical Monte Carlo simulation study. Chem. Eng. Sci. 57, 2439–2448 (2002)

    Article  CAS  Google Scholar 

  • Hong, S.Y., Tobias, G., Ballesteros, B., Oualid, F.E., Errey, J.C., Doores, K., Kirkland, A.I., Nellist, P.D., Green, M.L.H., Davis, B.G.: Atomic-scale detection of organic molecules coupled to single-walled carbon nanotubes. J. Am. Chem. Soc. 129, 10966–10967 (2007)

    Article  CAS  Google Scholar 

  • Hung, F.R., Coasne, B., Santiso, E.E., Gubbins, K.E., Siperstein, F.R., Sliwinska-Bartkowiak, M.: Molecular modeling of freezing of simple fluids confined within carbon nanotubes. J. Chem. Phys. 122, 144706(144701)–144706(144714) (2005)

    Article  CAS  Google Scholar 

  • Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    Article  CAS  Google Scholar 

  • Iijima, S., Ichihashi, T.: Single-shell carbon nanotubes of 1-nm diameter. Nature 363, 603–605 (1993)

    Article  CAS  Google Scholar 

  • IUPAC: Reporting physisorption data for gas/solid isotherms. Pure Appl. Chem. 57, 603–619 (1985)

    Article  Google Scholar 

  • Jiang, J., Sandler, S.I.: Capillary phase transitions of linear and branched alkanes in carbon nanotubes from molecular simulation. Langmuir 22, 7391–7399 (2006)

    Article  CAS  Google Scholar 

  • Jiang, J., Wagner, N.J., Sandler, S.I.: A Monte Carlo simulation study of the effect of carbon topology on nitrogen adsorption on graphite, a nanotube bundle, C60 fullerite, C168 schwarzite, and a nanoporous carbon. Phys. Chem. Chem. Phys. 6, 4440–4444 (2004)

    Article  CAS  Google Scholar 

  • Jiang, J., Sandler, S.I., Schenk, M., Smit, B.: Adsorption and separation of linear and branched alkanes on carbon nanotube bundles from configurational-bias Monte Carlo simulation. Phys. Rev. B 72, 45447 (2005)

    Article  CAS  Google Scholar 

  • Jorgensen, W.L., Maxwell, D.S., Tirado-Rives, J.: Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118, 11225–11236 (1996)

    Article  CAS  Google Scholar 

  • Kaneko, K., Cracknell, R.F., Nicholson, D.: Nitrogen adsorption in slit pores at ambient temperatures: comparison of simulation and experiment. Langmuir 10, 4506–4609 (1994)

    Article  Google Scholar 

  • Keil, F.J., Jakobtorweihen, S.: Adsorption and diffusion of alkanes and alkenes in carbon nanotubes. Paper presented in AIChE Annual Meeting Salt Lake City, USA, 2007

  • Klochko, A.V., Brodskaya, E.N., Piotrovskaya, E.M.: Computer simulations of dependence of adsorption characteristics of ethane on the size of graphite micropores. Langmuir 15, 545–552 (1999)

    Article  CAS  Google Scholar 

  • Kondratyuk, P., Wang, Y., Johnson, J.K., Yates, J.T., Jr.: Observation of a one-dimensional adsorption site on carbon nanotubes: adsorption of alkanes of different molecular lengths. J. Phys. Chem. B 109, 20999–21005 (2005)

    Article  CAS  Google Scholar 

  • Leach, A.R.: Molecular Modeling Principles and Applications. Longman, London (1996)

    Google Scholar 

  • Liu, Y., Gao, L., Sun, J., Zheng, S., Jiang, L., Wang, Y., Kajiura, H., Li, Y., Noda, K.: A multi-step strategy for cutting and purification of single-walled carbon nanotubes. Carbon 45, 1972–1978 (2007)

    Article  CAS  Google Scholar 

  • Longhurst, M.J., Quirke, N.: Temperature-driven pumping of fluid through single-walled carbon nanotubes. Nano Lett. 7, 3324–3328 (2007)

    Article  CAS  Google Scholar 

  • Lu, J.Q., Rider, D.A., Onyegam, E., Wang, H., Winnik, M.A., Manners, I., Cheng, Q., Fu, Q., Liu, J.: Carbon nanotubes with small and tunable diameters from poly(ferrocenylsilane)-block-polysiloxane diblock copolymers. Langmuir 22, 5174–5179 (2006)

    Article  CAS  Google Scholar 

  • Mao, Z., Sinnott, S.B.: Separation of organic molecular mixtures in carbon nanotubes and bundles: molecular dynamics simulations. J. Phys. Chem. B 105, 6916–6924 (2001)

    Article  CAS  Google Scholar 

  • McDonald, N.A., Carlson, H.A., Jorgensen, W.L.: Free energies of solvation in chloroform and water from a linear response approach. J. Phys. Org. Chem. 10, 563–576 (1997)

    Article  CAS  Google Scholar 

  • Meyyappan, M.: Carbon Nanotubes: Science and Applications. CRC Press, London (2005)

    Google Scholar 

  • Mukherjee, B., Maiti, P.K., Dasgupta, C., Sood, A.K.: Strong correlations and Fickian water diffusion in narrow carbon nanotubes. J. Chem. Phys. 126, 124704–124711 (2007)

    Article  CAS  Google Scholar 

  • Nicholson, D., Parsonage, N.G.: Computer Simulation and the Statistical Mechanics of Adsorption. Academic Press, New York (1982)

    Google Scholar 

  • NIST (2008). Chemistry Webbook. http://webbook.nist.gov

  • Noble, R.D., Agrawal, R.: Separations research needs for the 21st century. Ind. Eng. Chem. Res. 44, 2887–2892 (2005)

    Article  CAS  Google Scholar 

  • Nosé, S.: A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984)

    Article  Google Scholar 

  • Ohba, T., Kaneko, K.: Internal surface area evaluation of carbon nanotube with GCMC simulation-assisted N2 adsorption. J. Phys. Chem. B 106, 7171–7176 (2002)

    Article  CAS  Google Scholar 

  • Rouquerol, F., Rouquerol, J., Sing, K.: Adsorption by Powders and Porous Media. Academic Press, New York (1998)

    Google Scholar 

  • Rowlinson, J.S., Swinton, F.L.: Liquids and Liquid Mixtures. Butterworths, London (1982)

    Google Scholar 

  • Saito, R., Dresselhaus, G., Dresselhaus, M.S.: Physical Properties of Carbon Nanotubes. Imperial College Press, London (1998)

    Google Scholar 

  • Simonyan, V.V., Diep, P., Johnson, J.K.: Molecular simulation of hydrogen adsorption in charged single-walled carbon nanotubes. J. Chem. Phys. 111, 9778–9783 (1999)

    Article  CAS  Google Scholar 

  • Simonyan, V.V., Johnson, J.K., Kuznetsova, A., Yates, J.T.: Molecular simulation of xenon adsorption on single-walled carbon nanotubes. J. Chem. Phys. 114, 4180–4185 (2001)

    Article  CAS  Google Scholar 

  • Sinnott, S.B., Andrews, R.: Carbon nanotubes: synthesis, properties, and applications. Crit. Rev. Sol. State Mat. Sci. 26, 145–249 (2001)

    Article  CAS  Google Scholar 

  • Skoulidas, A.I., Sholl, D.S., Johnson, J.K.: Adsorption and diffusion of carbon dioxide and nitrogen through single-walled carbon nanotube membranes. J. Chem. Phys. 124, 54708(54701)–54708(54707) (2006)

    Article  CAS  Google Scholar 

  • Smith, W., Todorov, I.T.: A short description of DL_POLY. Mol. Sim. 32, 935–943 (2006)

    Article  CAS  Google Scholar 

  • Solomons, T.W.: Organic Chemistry, 5th edn. Wiley, New York (1992)

    Google Scholar 

  • Steele, W.A.: The physical interactions of gases with crystalline solids. Surf. Sci. 36, 317–352 (1973)

    Article  CAS  Google Scholar 

  • Steele, W.A.: The Interaction of Gases with Solid Surfaces. Pergamon Press, Oxford (1974)

    Google Scholar 

  • Steele, W.A.: Molecular interactions for physical adsorption. Chem. Rev. 93, 2355–2378 (1993)

    Article  CAS  Google Scholar 

  • Stoll, J., Vrabec, J., Hasse, H.: Vapor–liquid equilibria of mixtures containing nitrogen, oxygen, carbon dioxide, and ethane. AIChE J. 49, 2187–2198 (2003)

    Article  CAS  Google Scholar 

  • Striolo, A., Chialvo, A.A., Gubbins, K.E., Cummings, P.T.: Water in carbon nanotubes: adsorption isotherms and thermodynamic properties from molecular simulation. J. Chem. Phys. 122, 234712(234711)–234712(234714) (2005)

    Article  CAS  Google Scholar 

  • Sweatman, M.B., Quirke, N., Zhu, W., Kapteijn, F.: Analysis of gas adsorption in kureha active carbon based on the slit–pore model and Monte-Carlo simulations. Mol. Sim. 32, 513–522 (2006)

    Article  CAS  Google Scholar 

  • Taherpour, A.: Structural relationship between degree of unsaturation with polarizability of (5,5) armchair single-wall carbon nanotubes. Nanotubes Carbon Nanostruct. 15, 279–289 (2007)

    Article  CAS  Google Scholar 

  • van Gunsteren, W.F., Berendsen, H.J.C.: Computer simulation of molecular dynamics: methodology, applications, and perspectives in chemistry. Angew. Chem. Int. Ed. Engl. 29, 992–1023 (1990)

    Article  Google Scholar 

  • Verlet, L.: Computer “Experiments” on classical fluids. Thermodynamical properties of Lennard-Jones molecules. Phys. Rev. 159, 98–103 (1967)

    Article  CAS  Google Scholar 

  • Vernov, A., Steele, W.A.: The electrostatic field at a graphite surface and its effect on molecule-solid interactions. Langmuir 8, 155–159 (1992)

    Article  CAS  Google Scholar 

  • Vrabec, J., Stoll, J., Hasse, H.: A set of molecular models for symmetric quadrupolar fluids. J. Phys. Chem. B 105, 12126–12133 (2001)

    Article  CAS  Google Scholar 

  • Vrabec, J., Kedia, G.K., Hasse, H.: Prediction of Joule–Thomson inversion curves for pure fluids and one mixture by molecular simulation. Cryogenics 45, 253–258 (2005)

    Article  CAS  Google Scholar 

  • Woodcock, L.V., Singer, K.: Thermodynamics and structural properties of liquid ionic salts obtained by Monte Carlo computation. Trans. Farad. Soc. 67, 12–30 (1971)

    Article  CAS  Google Scholar 

  • Yang, R.T.: Adsorbents: Fundamentals and Applications. Wiley, New Jersey (2003)

    Book  Google Scholar 

  • Yerushalmi-Rozen, R., Szleifer, I.: Utilizing polymers for shaping the interfacial behavior of carbon nanotubes. Soft. Matter. 2, 24–28 (2006)

    Article  CAS  Google Scholar 

  • Zhao, X., Johnson, J.K.: An effective potential for adsorption of polar molecules on graphite. Mol. Sim. 31, 1–10 (2005)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erich A. Müller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cruz, F.J.A.L., Müller, E.A. Behavior of ethylene and ethane within single-walled carbon nanotubes. 1-Adsorption and equilibrium properties. Adsorption 15, 1–12 (2009). https://doi.org/10.1007/s10450-009-9154-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-009-9154-0

Keywords

Navigation