Skip to main content
Log in

Numerical analysis for optimal quadratic spline collocation method in two space dimensions with application to nonlinear time-fractional diffusion equation

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

Optimal quadratic spline collocation (QSC) method has been widely used in various problems due to its high-order accuracy, while the corresponding numerical analysis is rarely investigated since, e.g., the perturbation terms result in the asymmetry of optimal QSC discretization. We present numerical analysis for the optimal QSC method in two space dimensions via discretizing a nonlinear time-fractional diffusion equation for demonstration. The L2-1\(_\sigma \) formula on the graded mesh is used to account for the initial solution singularity, leading to an optimal QSC–L2-1\(_{\sigma }\) scheme where the nonlinear term is treated by the extrapolation. We provide the existence and uniqueness of the numerical solution, as well as the second-order temporal accuracy and fourth-order spatial accuracy with proper grading parameters. Furthermore, we consider the fast implementation based on the sum-of-exponentials technique to reduce the computational cost. Numerical experiments are performed to verify the theoretical analysis and the effectiveness of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  1. Alikhanov, A.A.: A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 280, 424–438 (2015)

    Article  MathSciNet  Google Scholar 

  2. Bialecki, B., Fairweather, G., Karageorghis, A., Nguyen, Q.N.: Optimal superconvergent one step quadratic spline collocation methods. BIT 48, 449–472 (2008)

    Article  MathSciNet  Google Scholar 

  3. Christara, C.C.: Quadratic spline collocation methods for elliptic partial differential equations. BIT 34, 33–61 (1994)

    Article  MathSciNet  Google Scholar 

  4. Christara, C.C., Chen, T., Dang, D.M.: Quadratic spline collocation for one-dimensional parabolic partial differential equations. Numer. Algorithm 53, 511–553 (2010)

    Article  MathSciNet  Google Scholar 

  5. Christara, C.C., Ng, K.S.: Optimal quadratic and cubic spline collocation on nonuniform partitions. Computing 76, 227–257 (2006)

    Article  MathSciNet  Google Scholar 

  6. Chen, H., Stynes, M.: Error analysis of a second-order method on fitted meshes for a time-fractional diffusion problem. J. Sci. Comput. 79, 624–647 (2019)

    Article  MathSciNet  Google Scholar 

  7. Diethelm, K., Garrappa, R., Giusti, A., Stynes, M.: Why fractional derivatives with nonsingular kernels should not be used, Fract. Calc. Appl. Anal. 23, 610–634 (2020)

    MathSciNet  Google Scholar 

  8. Diethelm, K., Ford, N.J.: Analysis of fractional differential equations. J. Math. Anal. Appl. 265, 229–248 (2002)

    Article  MathSciNet  Google Scholar 

  9. Eli, B.: CTRW pathways to the fractional diffusion equation. Chem. Phys. 284, 13–27 (2002)

    Article  Google Scholar 

  10. Houstis, E.N., Christara, C.C., Rice, J.R.: Quadratic-spline collocation methods for two-point boundary value problems. Internat. J. Numer. Methods Engrg. 26, 935–952 (1988)

    Article  MathSciNet  Google Scholar 

  11. Huang, C.B., Stynes, M.: Optimal \(H^1\) spatial convergence of a fully discrete finite element method for the time-fractional Allen-Cahn equation. Adv. Comput. Math. 46, 63 (2020)

    Article  Google Scholar 

  12. Hu, X.D., Zhu, S.F.: On geometric inverse problems in time-fractional subdiffusion. SIAM J. Sci. Comput. 44, A3560–A3591 (2022)

    Article  MathSciNet  Google Scholar 

  13. Jiang, S.D., Zhang, J.W., Zhang, Q., Zhang, Z.M.: Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations, Commun. Comput. Phys. 21, 650–678 (2017)

    Article  MathSciNet  Google Scholar 

  14. Jin, B.T., Zhou, Z.: Numerical treatment and analysis of time-fractional evolution equations. Appl. Math. Scie. Springer, Cham, 214 (2023)

  15. Kopteva, N.: Error analysis of the L1 method on graded and uniform meshes for a fractional-derivative problem in two and three dimensions. Math. Comput. 88, 2135–2155 (2019)

    Article  MathSciNet  Google Scholar 

  16. Li, B.Y., Ma, S.: Exponential convolution quadrature for nonlinear subdiffusion equations with nonsmooth initial data. SIAM J. Numer. Anal. 60, 503–528 (2022)

    Article  MathSciNet  Google Scholar 

  17. Li, X., Liao, H.L., Zhang, L.M.: A second-order fast compact scheme with unequal time-steps for subdiffusion problems. Numer. Algorithms 86, 1011–1039 (2021)

    Article  MathSciNet  Google Scholar 

  18. Liao, H.L., McLean, W., Zhang, J.W.: A second-order scheme with nonuniform time steps for a linear reaction-sudiffusion problem, Commun. Comput. Phys. 30, 567–601 (2021)

    Article  Google Scholar 

  19. Liao, H.L., McLean, W., Zhang, J.W.: A discrete Grönwall inequality with application to numerical schemes for fractional reaction-subdiffusion problems. SIAM J. Numer. Anal. 57, 218–237 (2019)

    Article  MathSciNet  Google Scholar 

  20. Liao, H.L., Li, D.F., Zhang, J.W.: Sharp error estimate of nonuniform L1 formula for linear reaction-subdiffusion equations. SIAM J. Numer. Anal. 56, 1112–1133 (2018)

    Article  MathSciNet  Google Scholar 

  21. Liao, H.L., Yan, Y.G., Zhang, J.W.: Unconditional convergence of a fast two-level linearized algorithm for semilinear subdiffusion equations. J. Sci. Comput. 80, 1–25 (2019)

    Article  MathSciNet  Google Scholar 

  22. Liu, J., Fu, H.F.: An efficient QSC approximation of variable-order time-fractional mobile-immobile diffusion equations with variably diffusive coefficients. J. Sci. Comput. 93, 44 (2022)

    Article  MathSciNet  Google Scholar 

  23. Liu, J., Fu, H.F., Zhang, J.S.: A QSC method for fractional subdiffusion equations with fractional bounding conditions and its application in parameters identification. Math. Comput. Simulat. 174, 153–174 (2020)

    Article  Google Scholar 

  24. Luo, W.H., Huang, T.Z., Wu, G.C., Gu, X.M.: Quadratic spline collocation method for the time fractional subdiffusion equation. Appl. Math. Comput. 276, 252–265 (2016)

    MathSciNet  Google Scholar 

  25. Luo, W.H., Gu, X.M., Yang, L., Meng, J.: A Lagrange-quadratic spline optimal collocation method for the time tempered fractional diffusion equation. Math. Comput. Simulat. 182, 1–24 (2021)

    Article  MathSciNet  Google Scholar 

  26. Lin, Y.M., Xu, C.J.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)

    Article  MathSciNet  Google Scholar 

  27. Stynes, M.: Fractional-order derivatives defined by continuous kernels are too restrictive. Appl. Math. Lett. 85, 22–26 (2018)

    Article  MathSciNet  Google Scholar 

  28. Stynes, M.: Too much regularity may force too much uniqueness, Fract. Calc. Appl. Anal. 19, 1554–1562 (2016)

    MathSciNet  Google Scholar 

  29. Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55, 1057–1079 (2017)

    Article  MathSciNet  Google Scholar 

  30. Sun, Z.Z., Wu, X.N.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56, 193–209 (2006)

    Article  MathSciNet  Google Scholar 

  31. Yan, Y.G., Sun, Z.Z., Zhang, J.W.: Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations: a second-order scheme, Commun. Comput. Phys. 22, 1028–1048 (2017)

    Article  MathSciNet  Google Scholar 

  32. Zaky, M.A., Bockstal, K.V., Taha, T.R., Suragan, D., Hendy, A.S.: An L1 type difference/Galerkin spectral scheme for variable-order time-fractional nonlinear diffusion-reaction equations with fixed delay. J. Comput. Appl. Math. 420, 114832 (2023)

    Article  MathSciNet  Google Scholar 

  33. Zhou, H., Tian, W.Y.: Two time-stepping schemes for sub-diffusion equations with singular source terms. J. Sci. Comput. 92, 70 (2022)

    Article  MathSciNet  Google Scholar 

Download references

Funding

The work of J. Liu was supported in part by the National Key R &D Program of China (No. 2023YFA1009003), the Shandong Provincial Natural Science Foundation (Nos. ZR2021MA020, ZR2020MA039), the Fundamental Research Funds for the Central Universities (Nos. 22CX03016A, 20CX05011A), and the Major Scientific and Technological Projects of CNPC under Grant (No. ZD2019-184-001). The work of X. Zheng was supported in part by the National Natural Science Foundation of China (No. 12301555), the National Key R &D Program of China (No. 2023YFA1008903), and the Taishan Scholars Program of Shandong Province (No. tsqn202306083).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Liu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by: Martin Stynes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, X., Zheng, X., Liu, J. et al. Numerical analysis for optimal quadratic spline collocation method in two space dimensions with application to nonlinear time-fractional diffusion equation. Adv Comput Math 50, 21 (2024). https://doi.org/10.1007/s10444-024-10116-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-024-10116-9

Keywords

Mathematics Subject Classification (2010)

Navigation