Skip to main content
Log in

New low-order mixed finite element methods for linear elasticity

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

New low-order \({H}({{\text {div}}})\)-conforming finite elements for symmetric tensors are constructed in arbitrary dimension. The space of shape functions is defined by enriching the symmetric quadratic polynomial space with the \({(d+1)}\)-order normal-normal face bubble space. The reduced counterpart has only \({d(d+1)}^{{2}}\) degrees of freedom. Basis functions are explicitly given in terms of barycentric coordinates. Low-order conforming finite element elasticity complexes starting from the Bell element, are developed in two dimensions. These finite elements for symmetric tensors are applied to devise robust mixed finite element methods for the linear elasticity problem, which possess the uniform error estimates with respect to the Lamé coefficient \({\lambda }\), and superconvergence for the displacement. Numerical results are provided to verify the theoretical convergence rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this paper.

References

  1. Johnson, C., Mercier, B.: Some equilibrium finite element methods for two-dimensional problems in continuum mechanics. Numer. Math. 30, 103–116 (1978)

    Article  MathSciNet  Google Scholar 

  2. Arnold, D., Douglas JR, J., Gupta, C.P.: A family of higher order mixed finite element methods for plane elasticity. Numer. Math. 45, 1–22 (1984)

  3. Amara, M., Thomas, J.-M.: Equilibrium finite elements for the linear elastic problem. Numer. Math. 33(4), 367–383 (1979)

    Article  MathSciNet  Google Scholar 

  4. Arnold, D.N., Falk, R.S., Winther, R.: Mixed finite element methods for linear elasticity with weakly imposed symmetry. Math. Comp. 76(260), 1699–1723 (2007). https://doi.org/10.1090/S0025-5718-07-01998-9

    Article  MathSciNet  Google Scholar 

  5. Boffi, D., Brezzi, F., Fortin, M.: Reduced symmetry elements in linear elasticity. Commun. Pure Appl. Anal. 8(1), 95–121 (2009). https://doi.org/10.3934/cpaa.2009.8.95

    Article  MathSciNet  Google Scholar 

  6. Cockburn, B., Gopalakrishnan, J., Guzmán, J.: A new elasticity element made for enforcing weak stress symmetry. Math. Comp. 79(271), 1331–1349 (2010). https://doi.org/10.1090/S0025-5718-10-02343-4

    Article  MathSciNet  Google Scholar 

  7. Farhloul, M., Fortin, M.: Dual hybrid methods for the elasticity and the Stokes problems: a unified approach. Numer. Math. 76(4), 419–440 (1997). https://doi.org/10.1007/s002110050270

    Article  MathSciNet  Google Scholar 

  8. Gopalakrishnan, J., Guzmán, J.: A second elasticity element using the matrix bubble. IMA J. Numer. Anal. 32(1), 352–372 (2012). https://doi.org/10.1093/imanum/drq047

    Article  MathSciNet  Google Scholar 

  9. Qiu, W., Demkowicz, L.: Mixed \(hp\)-finite element method for linear elasticity with weakly imposed symmetry. Comput. Methods Appl. Mech. Engrg. 198(47–48), 3682–3701 (2009). https://doi.org/10.1016/j.cma.2009.07.010

    Article  MathSciNet  Google Scholar 

  10. Arnold, D., Winther, R.: Mixed finite elements for elasticity. Numer. Math. 92, 401–419 (2002)

    Article  MathSciNet  Google Scholar 

  11. Hu, J., Zhang, S.: Finite element approximations of symmetric tensors on simplicial grids in \(\mathbb{R}^n\): the lower order case. Math. Models Methods Appl. Sci. 26(9), 1649–1669 (2016). https://doi.org/10.1142/S0218202516500408

  12. Arnold, D.N., Awanou, G., Winther, R.: Finite elements for symmetric tensors in three dimensions. Math. Comp. 77(263), 1229–1251 (2008). https://doi.org/10.1090/S0025-5718-08-02071-1

    Article  MathSciNet  Google Scholar 

  13. Adams, S., Cockburn, B.: A mixed finite element method for elasticity in three dimensions. J. Sci. Comput. 25(3), 515–521 (2005). https://doi.org/10.1007/s10915-004-4807-3

    Article  MathSciNet  Google Scholar 

  14. Hu, J., Zhang, S.: A family of symmetric mixed finite elements for linear elasticity on tetrahedral grids. Sci China Math 58(2), 297–307 (2015). https://doi.org/10.1007/s11425-014-4953-5

    Article  MathSciNet  Google Scholar 

  15. Hu, J., Zhang, S.: A family of conforming mixed finite elements for linear elasticity on triangular grids. arXiv:1406.7457 (2014)

  16. Hu, J.: Finite element approximations of symmetric tensors on simplicial grids in \(\mathbb{R}^{n}\): the higher order case. J. Comput. Math. 33(3), 283–296 (2015). https://doi.org/10.4208/jcm.1412-m2014-0071

  17. Chen, L., Huang, X.: Finite elements for div- and divdiv-conforming symmetric tensors in arbitrary dimension. SIAM J. Numer. Anal. 60(4), 1932–1961 (2022). https://doi.org/10.1137/21M1433708

    Article  MathSciNet  Google Scholar 

  18. Arnold, D.N., Awanou, G.: Rectangular mixed finite elements for elasticity. Math. Models Methods Appl. Sci. 15(9), 1417–1429 (2005). https://doi.org/10.1142/S0218202505000741

    Article  MathSciNet  Google Scholar 

  19. Hu, J.: A new family of efficient conforming mixed finite elements on both rectangular and cuboid meshes for linear elasticity in the symmetric formulation. SIAM J. Numer. Anal. 53(3), 1438–1463 (2015). https://doi.org/10.1137/130945272

    Article  MathSciNet  Google Scholar 

  20. Hu, J., Man, H., Zhang, S.: A simple conforming mixed finite element for linear elasticity on rectangular grids in any space dimension. J. Sci. Comput. 58(2), 367–379 (2014). https://doi.org/10.1007/s10915-013-9736-6

    Article  MathSciNet  Google Scholar 

  21. Awanou, G.: Two remarks on rectangular mixed finite elements for elasticity. J. Sci. Comput. 50(1), 91–102 (2012). https://doi.org/10.1007/s10915-011-9474-6

    Article  MathSciNet  Google Scholar 

  22. Chen, S., Wang, Y.: Conforming rectangular mixed finite elements for elasticity. Math. Models Methods Appl. Sci. 47, 93–108 (2011)

    MathSciNet  Google Scholar 

  23. Hellan, K.: Analysis of elastic plates in flexure by a simplified finite element method. Acta polytechnica Scandinavica. Civil engineering and building construction series, vol. 46. Norges tekniske vitenskapsakademi, Trondheim (1967)

  24. Herrmann, L.R.: Finite element bending analysis for plates. J. Eng. Mech. Div. 93(EM5), 49–83 (1967)

    Google Scholar 

  25. Johnson, C.: On the convergence of a mixed finite-element method for plate bending problems. Numer. Math. 21, 43–62 (1973)

    Article  MathSciNet  Google Scholar 

  26. Sinwel, A.: A new family of mixed finite elements for elasticity. PhD thesis, Johannes Kepler University Linz (2009)

  27. Pechstein, A., Schöberl, J.: Tangential-displacement and normal-normal-stress continuous mixed finite elements for elasticity. Math. Models Methods Appl. Sci. 21(8), 1761–1782 (2011). https://doi.org/10.1142/S0218202511005568

    Article  MathSciNet  Google Scholar 

  28. Arnold, D.N., Winther, R.: Nonconforming mixed elements for elasticity. Math. Models Methods Appl. Sci. 13(3), 295–307 (2003). https://doi.org/10.1142/S0218202503002507

    Article  MathSciNet  Google Scholar 

  29. Awanou, G.: A rotated nonconforming rectangular mixed element for elasticity. Calcolo 46, 49–60 (2009)

    Article  MathSciNet  Google Scholar 

  30. Arnold, D.N., Awanou, G., Winther, R.: Nonconforming tetrahedral mixed finite elements for elasticity. Math. Models Methods Appl. Sci. 24(4), 783–796 (2014). https://doi.org/10.1142/S021820251350067X

    Article  MathSciNet  Google Scholar 

  31. Gopalakrishnan, J., Guzmán, J.: Symmetric nonconforming mixed finite elements for linear elasticity. SIAM J. Numer. Anal. 49(4), 1504–1520 (2011). https://doi.org/10.1137/10080018X

    Article  MathSciNet  Google Scholar 

  32. Xie, X., Xu, J.: New mixed finite elements for plane elasticity and Stokes equations. Sci China Math 54(7), 1499–1519 (2011). https://doi.org/10.1007/s11425-011-4171-3

    Article  MathSciNet  Google Scholar 

  33. Wu, S., Gong, S., Xu, J.: Interior penalty mixed finite element methods of any order in any dimension for linear elasticity with strongly symmetric stress tensor. Math. Models Methods Appl. Sci. 27(14), 2711–2743 (2017)

    Article  MathSciNet  Google Scholar 

  34. Hu, J., Shi, Z.-C.: Lower order rectangular nonconforming mixed finite elements for plane elasticity. SIAM J. Numer. Anal. 46(1), 88–102 (2007). https://doi.org/10.1137/060669681

    Article  MathSciNet  Google Scholar 

  35. Man, H.-Y., Hu, J., Shi, Z.-C.: Lower order rectangular nonconforming mixed finite element for the three-dimensional elasticity problem. Math. Models Methods Appl. Sci. 19(1), 51–65 (2009). https://doi.org/10.1142/S0218202509003358

    Article  MathSciNet  Google Scholar 

  36. Yi, S.-Y.: Nonconforming mixed finite element methods for linear elasticity using rectangular elements in two and three dimensions. Calcolo 42(2), 115–133 (2005). https://doi.org/10.1007/s10092-005-0101-5

    Article  MathSciNet  Google Scholar 

  37. Yi, S.-Y.: A new nonconforming mixed finite element method for linear elasticity. Math. Models Methods Appl. Sci. 16(7), 979–999 (2006). https://doi.org/10.1142/S0218202506001431

    Article  MathSciNet  Google Scholar 

  38. Hu, J., Ma, R., Sun, Y.: A new mixed finite element for the linear elasticity problem in 3D. arXiv:2303.05805 (2023)

  39. Cai, Z., Ye, X.: A mixed nonconforming finite element for linear elasticity. Numer. Methods Partial Differential Equations 21(6), 1043–1051 (2005). https://doi.org/10.1002/num.20075

    Article  MathSciNet  Google Scholar 

  40. Chen, L., Hu, J., Huang, X.: Stabilized mixed finite element methods for linear elasticity on simplicial grids in \(\mathbb{R} ^{n}\). Comput. Methods Appl. Math. 17(1), 17–31 (2017). https://doi.org/10.1515/cmam-2016-0035

    Article  MathSciNet  Google Scholar 

  41. Gong, S., Wu, S., Xu, J.: New hybridized mixed methods for linear elasticity and optimal multilevel solvers. Numer. Math. 141(2), 569–604 (2019). https://doi.org/10.1007/s00211-018-1001-3

    Article  MathSciNet  Google Scholar 

  42. Eastwood, M.: A complex from linear elasticity. In: The Proceedings of the 19th Winter School “Geometry and Physics” (Srní, 1999), pp. 23–29 (2000)

  43. Bell, K.: A refined triangular plate bending finite element. Internat. J. Numer. Methods Engrg. 1(1), 101–122 (1969)

    Article  Google Scholar 

  44. Nédélec, J.-C.: A new family of mixed finite elements in \({ R}^3\). Numer. Math. 50(1), 57–81 (1986). https://doi.org/10.1007/BF01389668

    Article  MathSciNet  Google Scholar 

  45. Chen, L., Huang, X.: Geometric decompositions of \(H({\rm div})\)-conforming finite element tensors, part I: Vector and matrix functions. arXiv:2112.14351 (2022)

  46. Chen, L., Huang, X.: Finite elements for divdiv-conforming symmetric tensors. arXiv:2005.01271 (2020)

  47. Okabe, M.: Explicit interpolation formulas for the Bell triangle. Comput. Methods Appl. Mech. Engrg. 117(3–4), 411–421 (1994)

    Article  MathSciNet  Google Scholar 

  48. Boffi, D., Brezzi, F., Fortin, M.: Mixed finite element methods and applications, p. 685. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36519-5

  49. Huang, J., Huang, X.: Local and parallel algorithms for fourth order problems discretized by the Morley-Wang-Xu element method. Numer. Math. 119(4), 667–697 (2011). https://doi.org/10.1007/s00211-011-0396-x

    Article  MathSciNet  Google Scholar 

  50. Brenner, S.C.: Korn’s inequalities for piecewise \(H^1\) vector fields. Math. Comp. 73(247), 1067–1087 (2004). https://doi.org/10.1090/S0025-5718-03-01579-5

    Article  MathSciNet  Google Scholar 

  51. Arnold, D.N., Hu, K.: Complexes from complexes. Found. Comput. Math. 21(6), 1739–1774 (2021). https://doi.org/10.1007/s10208-021-09498-9

    Article  MathSciNet  Google Scholar 

  52. Chen, L., Hu, J., Huang, X.: Fast auxiliary space preconditioners for linear elasticity in mixed form. Math. Comp. 87(312), 1601–1633 (2018). https://doi.org/10.1090/mcom/3285

    Article  MathSciNet  Google Scholar 

  53. Douglas, J., Jr., Roberts, J.E.: Global estimates for mixed methods for second order elliptic equations. Math. Comp. 44(169), 39–52 (1985). https://doi.org/10.2307/2007791

    Article  MathSciNet  Google Scholar 

  54. Stenberg, R.: Postprocessing schemes for some mixed finite elements. RAIRO Modél. Math. Anal. Numér. 25(1), 151–167 (1991)

    Article  MathSciNet  Google Scholar 

  55. Brenner, S.C., Sung, L.-Y.: Linear finite element methods for planar linear elasticity. Math. Comp. 59(200), 321–338 (1992). https://doi.org/10.2307/2153060

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank the editors and anonymous reviewers for their valuable comments and suggestions.

Funding

The first author was supported by the National Natural Science Foundation of China Project 12171300, and the Natural Science Foundation of Shanghai 21ZR1480500.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by: Ilaria Perugia

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Zhang, C., Zhou, Y. et al. New low-order mixed finite element methods for linear elasticity. Adv Comput Math 50, 17 (2024). https://doi.org/10.1007/s10444-024-10112-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-024-10112-z

Keywords

Mathematics Subject Classification (2010)

Navigation