Skip to main content
Log in

Ellipsoidal conformal and area-/volume-preserving parameterizations and associated optimal mass transportations

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we propose the conformal energy minimization (CEM), stretching energy minimization (SEM) and volume stretching energy minimization (VSEM) algorithms by using the Jacobi conformal projection to compute the ellipsoidal conformal, area- and volume-preserving parameterizations from the boundary of a simply connected closed 3-manifold \(\mathcal {M}\) to the surface of an ellipsoid \(\mathcal {E}^3(a,b,c)\) and from the 3-manifold \(\mathcal {M}\) to an ellipsoid \(\mathcal {E}^3(a,b,c)\), respectively. At each correction step of SEM and VSEM, the coefficients of the Laplacian matrices are modified by imposing local area/volume stretch factors in the denominators. Furthermore, to find the area-preserving optimal mass transportation (OMT) map between \(\partial \mathcal {M}\) and \(\partial \mathcal {E}^3(a,b,c)\) and the volume-preserving OMT map between \(\mathcal {M}\) and \(\mathcal {E}^3(a,b,c)\), in light of SEM and VSEM, we propose the ellipsoidal area-preserving OMT (AOMT) and volume-preserving OMT (VOMT) algorithms, which are combined with the project gradient method, while preserving the local area/volume ratios and minimizing the transport costs and distortions. The numerical results demonstrate that the transformation of a 3D irregular image into an appropriate ellipsoid or cuboid incurs a smaller transport cost and reduces the difference in the conversion compared with that into a ball or cube.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Large-Scale Bounded Distortion Mappings. https://shaharkov.github.io/LargeScaleBD.html. Accessed 25 December 2018

  2. David Xianfeng Gu’s Home Page. http://www3.cs.stonybrook.edu/~gu/ (2017)

  3. Iso2Mesh. http://iso2mesh.sourceforge.net (2018)

  4. Antonelli, M., Reinke, A., Bakas, S., Farahani, K., et al.: The medical segmentation decathlon. Preprint at arxiv:2106.05735 (2021)

  5. Bakas, S., Akbari, H., Sotiras, A., Bilello, M., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4, 170117 (2017)

    Article  Google Scholar 

  6. Bakas, S., Reyes, M., Jakab, A., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge. Preprint at arxiv:1811.02629 (2019)

  7. Bonnotte, N.: From Knothe’s rearrangement to Brenier’s optimal transport map. SIAM J. Math. Anal. 45(1), 64–87 (2013). https://doi.org/10.1137/120874850

    Article  MathSciNet  MATH  Google Scholar 

  8. Brenier, Y.: Polar factorization and monotone rearrangement of vector-valued functions. Commun. Pure Appl. Math. 44(4), 375–417 (1991). https://doi.org/10.1002/cpa.3160440402

    Article  MathSciNet  MATH  Google Scholar 

  9. Caffarelli, L.A.: The regularity of mappings with a convex potential. J. Am. Math. Soc. 5(1), 99–104 (1992). http://www.jstor.org/stable/2152752

  10. Engwirda, D.: Locally optimal Delaunay-refinement and optimisation-based mesh generation. Ph.D. thesis, The University of Sydney (2014)

  11. Engwirda, D.: Voronoi-based point-placement for three-dimensional Delaunay-refinement. Procedia Eng. 124, 330–342 (2015)

    Article  Google Scholar 

  12. Engwirda, D.: Conforming restricted Delaunay mesh generation for piecewise smooth complexes. Procedia Eng. 163, 84–96 (2016)

    Article  Google Scholar 

  13. Engwirda, D., Ivers, D.: Face-centred Voronoi refinement for surface mesh generation. Procedia Eng. 82, 8–20 (2014)

    Article  Google Scholar 

  14. Engwirda, D., Ivers, D.: Off-centre Steiner points for Delaunay-refinement on curved surfaces. Comput. Aided Des. 72, 157–171 (2016)

    Article  MathSciNet  Google Scholar 

  15. Floater, M.S., Hormann, K.: Surface parameterization: a tutorial and survey. In: Advances in Multiresolution for Geometric Modelling, pp. 157–186. Springer Berlin Heidelberg (2005)

  16. Garg, V., Jaakkola, T.: Solving graph compression via optimal transport. In: Advances in Neural Information Processing Systems, pp. 8014–8025. Curran Associates, Inc. (2019)

  17. Grimmett, G., Stirzaker, D.: Probability and random processes. Oxford university press (2020)

  18. Gu, X.D., Yau, S.T.: Computational Conformal Geometry, vol. 1. International Press Somerville, MA (2008)

    MATH  Google Scholar 

  19. Haker, S., Zhu, L., Tannenbaum, A., Angenent, S.: Optimal mass transport for registration and warping. Int. J. Comput. Vis. 60, 225–240 (2004)

    Article  MATH  Google Scholar 

  20. Haralick, R.M., Shapiro, L.G.: Computer and robot vision, vol. 1. Addison-wesley Reading (1992)

  21. Hormann, K., Lévy, B., Sheffer, A.: Mesh parameterization: Theory and practice. In ACM SIGGRAPH Course Notes (2007)

  22. Jacobi, C.G.J., Borchardt, C.W.: Vorlesungen über Dynamik. G. Reimer (1866)

  23. Jacobson, A.: common-3d-test-models. https://github.com/alecjacobson/common-3d-test-models (2021)

  24. Kolouri, S., Park, S.R., Thorpe, M., Slepcev, D., Rohde, G.K.: Optimal mass transport: Signal processing and machine-learning applications. IEEE Signal Process. Mag. 34, 43–59 (2017)

    Article  Google Scholar 

  25. Kolouri, S., Tosun, A.B., Ozolek, J.A., Rohde, G.K.: A continuous linear optimal transport approach for pattern analysis in image datasets. Pattern Recognit. 51, 453–462 (2016)

    Article  MATH  Google Scholar 

  26. Kovalsky, S.Z., Aigerman, N., Basri, R., Lipman, Y.: Large-scale bounded distortion mappings. ACM Trans. Graph. 34(6), 191:1–191:10 (2015). https://doi.org/10.1145/2816795.2818098

  27. Lei, N., Su, K., Cui, L., Yau, S.T., Gu, X.D.: A geometric view of optimal transportation and generative model. Comput. Aided Geom. Des. 68, 1–21 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  28. Li, P., Wang, Q., Zhang, L.: A novel earth mover’s distance methodology for image matching with Gaussian mixture models. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 1689–1696 (2013)

  29. Lin, W.W., Juang, C., Yueh, M.H., Huang, T.M., Yau, S.T.: 3D brain tumor segmentation using a two-stage optimal mass transport algorithm. Sci. Rep. 11, 14686 (2021)

    Article  Google Scholar 

  30. Menze, B.H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imag. 34(10), 1993–2024 (2015)

    Article  Google Scholar 

  31. Nyrtsov, M.V., Fleis, M.E., Borisov, M.M., Stooke, P.J.: Jacobi conformal projection of the triaxial ellipsoid: new projection for mapping of small celestial bodies. In: Cartography from Pole to Pole, pp. 235–246. Springer Berlin Heidelberg (2014)

  32. Parikh, N., Boyd, S.: Proximal algorithms. Foundations and Trends in optimization 1(3), 127–239 (2014)

    Article  Google Scholar 

  33. Rubner, Y., Tomasi, C., Guibas, L.J.: The earth mover’s distance as a metric for image retrieval. Int. J. Comput. Vis. 40, 99–121 (2000)

    Article  MATH  Google Scholar 

  34. Simpson, A.L., Antonelli, M., Bakas, S., Bilello, M., et al.: A large annotated medical image dataset for the development and evaluation of segmentation algorithms. Preprint at arxiv:1902.09063 (2019)

  35. Su, K., Chen, W., Lei, N., Zhang, J., Qian, K., Gu, X.: Volume preserving mesh parameterization based on optimal mass transportation. Comput.-Aided Design 82, 42–56 (2017). https://doi.org/10.1016/j.cad.2016.05.020

  36. Wang, W., Slepcev, D., Basu, S., Ozolek, J.A., Rohde, G.K.: A linear optimal transportation framework for quantifying and visualizing variations in sets of images. Int. J. Comput. Vis. 101, 254–269 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Yoshiyasu, Y., Ma, W.C., Yoshida, E., Kanehiro, F.: As-conformal-as-possible surface registration. Comput. Graph. Forum 33(5), 257–267 (2014)

    Google Scholar 

  38. Yueh, M.H., Huang, T.M., Li, T., Lin, W.W., Yau, S.T.: Projected gradient method combined with homotopy techniques for volume-measure-preserving optimal mass transportation problems. J. Sci. Comput. 88(64), 1–24 (2021). https://doi.org/10.1007/s10915-021-01583-z

    Article  MathSciNet  MATH  Google Scholar 

  39. Yueh, M.H., Li, T., Lin, W.W., Yau, S.T.: A novel algorithm for volume-preserving parameterizations of 3-manifolds. SIAM J. Imag. Sci. 12(2), 1071–1098 (2019). https://doi.org/10.1137/18M1201184

    Article  MathSciNet  MATH  Google Scholar 

  40. Yueh, M.H., Lin, W.W., Wu, C.T., Yau, S.T.: An efficient energy minimization for conformal parameterizations. J. Sci. Comput. 73(1), 203–227 (2017). https://doi.org/10.1007/s10915-017-0414-y

    Article  MathSciNet  MATH  Google Scholar 

  41. Yueh, M.H., Lin, W.W., Wu, C.T., Yau, S.T.: A novel stretch energy minimization algorithm for equiareal parameterizations. J. Sci. Comput. 78(3), 1353–1386 (2019). https://doi.org/10.1007/s10915-018-0822-7

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank Professor Mei-Heng Yueh of National Taiwan Normal University for providing Fig. 3 for this paper.

Funding

The work of J.-W. Lin, W.-W. Lin, and T.-M. Huang was partially supported by the Ministry of Science and Technology (MoST) 110-2811-M-A49-534 and 110-2115-M-003-012-MY3, respectively, in Taiwan. The work of T. Li was partially supported by the National Natural Science Foundation of China (NSFC) Grant 11971105. The work of the authors was partially supported by the National Center for Theoretical Sciences (NCTS) in Taiwan, and the Big Data Computing Center in Southeast University, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiexiang Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Communicated by: Raymond H. Chan

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Discrete 3-Manifold and Associated Ellipsoid

Appendix: Discrete 3-Manifold and Associated Ellipsoid

Let \(\mathcal {M}\) be a simplicial 3-complex with a genus-zero boundary. Suppose the volume of \(\mathcal {M}\) is one and the volume center lies at the origin. First, we need to determine the size of the ellipsoid to which \(\mathcal {M}\) is mapped, i.e., we need to determine three principal semiaxes \(a,b,c\,\) of the desired ellipsoid. This is the ellipsoid fitting problem, which is commonly seen in various fields. To this end, in view of probability theory and statistics, we adopt the concept of central moments [17] in statistics. Suppose that the cardinality of \(\mathbb {V}(\mathcal {M})\) is N and \(v_i=(x_i,y_i,z_i)\in \mathbb {V}(\mathcal {M})\) for \(i=1,2,\ldots ,N\). The covariance matrix is

$$\begin{aligned} K = \frac{1}{N} \begin{bmatrix} \sum _{i=1}^N(x_i-\bar{x})(x_i-\bar{x}) &{} \sum _{i=1}^N(x_i-\bar{x})(y_i-\bar{y}) &{} \sum _{i=1}^N(x_i-\bar{x})(z_i-\bar{z}) \\ \sum _{i=1}^N(y_i-\bar{y})(x_i-\bar{x}) &{} \sum _{i=1}^N(y_i-\bar{y})(y_i-\bar{y}) &{} \sum _{i=1}^N(y_i-\bar{y})(z_i-\bar{z}) \\ \sum _{i=1}^N(z_i-\bar{z})(x_i-\bar{x}) &{} \sum _{i=1}^N(z_i-\bar{z})(y_i-\bar{y}) &{} \sum _{i=1}^N(z_i-\bar{z})(z_i-\bar{z}) \end{bmatrix} , \end{aligned}$$
(32)

where \(\bar{x}=\sum _{i=1}^N x_i/N, \bar{y}=\sum _{i=1}^N y_i/N\) and \(\bar{z}=\sum _{i=1}^N z_i/N\). The matrix K is positive definite because all vertices are not in the same plane. In addition, all eigenvalues of K are positive, with corresponding eigenvectors orthogonal to each other. We develop a method, specified in Algorithm 7, to estimate three semiaxes and the orientation of the ellipsoid using the eigenvalues and the eigenvectors, respectively [20]. Additionally, using this method, we obtain a closed curve \(\gamma _A\), which corresponds to the ellipse \(\{(x,y,0)\in \mathbb {R}^3~|~\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\}\), and two vertices \(v_1\) and \(v_2\), which correspond to \((-a,0,0)\) and (a, 0, 0) of \(\mathcal {E}^3(a,b,c)\), respectively. These objects are necessary for the ellipsoidal CEM algorithm.

figure a

Ellipsoid fitting.

Fig. 8
figure 8

Illustration of Algorithm 7 by fitting a liver-shaped 3-complex \(\mathcal {M}\) to an ellipsoid

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, JW., Li, T., Lin, WW. et al. Ellipsoidal conformal and area-/volume-preserving parameterizations and associated optimal mass transportations. Adv Comput Math 49, 50 (2023). https://doi.org/10.1007/s10444-023-10048-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-023-10048-w

Keywords

Mathematics Subject Classification (2010)

Navigation