Skip to main content
Log in

An efficient computation of the inverse of the single layer matrix for the resolution of the linear elasticity problem in BEM

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we describe and analyze fast procedures for numerical resolution of Dirichlet and mixed boundary value problems in linear elasticity, in the particular case of two-dimensional circular domain. The direct boundary integral formulation of the Dirichlet problem is approximated by using the B-splines on the boundary curve. This yields an algebraic linear system involving two dense matrices with block structure, the single layer and the double layer matrices. The associated matrix entries are computed explicitly and efficiently. Additionally, the circulant block structure of the single layer matrix and the discrete Fourier transform (DFT) matrix enable us to easily compute the inverse of the single layer matrix as a product of sparse matrices and the discrete Fourier transform matrix which speed up the matrix-vector multiplication. Moreover, the discrete Fourier transform permits us to construct some optimal preconditioners for the conjugate gradient methods. Some numerical examples for the Dirichlet and the mixed problems which show a remarkable efficiency and accuracy of algorithms for the problems are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chao, C.Y.: A remark on symmetric circulant matrices. Lin. Alg. Appl. 103, 133–148 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chen, M.K.: On the solution of circulant linear systems. SIAM J. Numer. Anal. 24, 668–683 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  3. Davis, P.J.: Circulant Matrices. Wiley, New York, 1(979)

  4. Eck, C., Steinbach, O., Wendland, W.L.: A symmetric boundary element method for contact problems with friction. Math. Comp. Sim. 50, 43–61 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hackbusch, W., Börn, S.: \(\cal{H}^2\)-Matrix Approximation of Integral Operators by interpolation. Max-Plank-Institut Mathematik in den NaturwissenSchaften. D-04103, 22–26 (2004)

  6. Henrici, P.: Fast Fourier methods in computational complex analysis. SIAM. 21, 481–527 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hsiao, G.C., Wendland, W.L.: Boundary Integral Equations, AMS, 164. Springer Nature, Switzerland AG (2021)

    Book  Google Scholar 

  8. Kielhorn, L.: A Time-Domain Symmetric Galerkin BEM for viscoelastodynamics. PhD thesis, Verlag der Technischen Universität, TU Graz, (2009)

  9. Kielhorn, L., Schanz, M.: Convolution quadrature method-based symmetric Galerkin boundary element method for 3-D elastodynamics. Int. J. Num. Meth. Eng. 76, 1724–1746 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lin, C.J., Saigal, R.: An incomplete Cholesky factorization for dense symmetric positive definite matrices. Math. Meth. Appl. Sci. 40, 536–558 (2000)

    MathSciNet  MATH  Google Scholar 

  11. Meyer, A., Rjasanow, S.: An effective direct solution method for certain boundary element equations in 3D. Math. Meth. Appl. Sci. 13, 43–53 (1990)

    Article  MATH  Google Scholar 

  12. Nédélec, J.C.: Integral equations with nonintegrable kernels. Integral Equations Operator Theory. 5(4), 562–572 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  13. Of, G., Steinbach, O.: A fast multipole boundary Element method for a modified hypersingular boundary integral equation. Springer. 12, 163–169 (2003)

    MATH  Google Scholar 

  14. Rjasanow, S.: Vorkonditionierte iterative Auflösung von Randelementgleichungen für die Dirichlet-Aufgabe. WS TU, Chemnitz (1990)

    MATH  Google Scholar 

  15. Rjasanow, S.: Effective Algorithms with Circulant-Block Matrices. Lin. Alg. Appl. 202, 55–69 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  16. Rjasanow, S.: Optimal Preconditioner for Boundary Element Formulation of the Dirichlet Problem in Elasticity: Math. Meth. in the Appl. Sci. 18, 603–613 (1995)

    Article  MATH  Google Scholar 

  17. Steinbach, O.: Numerical Approximation Methods for Elliptic Boundary Value Problems. Finite and Boundary Elements. Springer, New York (2008)

    Book  MATH  Google Scholar 

  18. Steinbach, O., Tchoualag, L.: Fast Fourier transform for efficient evaluation of Newton potential in BEM. Appl. Num. Math. 81, 1–14 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Tchoualag, L: Combined Generalized Newton Approach with Boundary Element Method for Contact Problems. PhD thesis, TU Graz, (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lionel Ouya Ndjansi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Communicated by: Anna-Karin Tornberg

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ndjansi, L.O., Tchoualag, L. An efficient computation of the inverse of the single layer matrix for the resolution of the linear elasticity problem in BEM. Adv Comput Math 49, 31 (2023). https://doi.org/10.1007/s10444-023-10039-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-023-10039-x

Keywords

Navigation