Skip to main content
Log in

Generalized Trefftz Method in the Gradient Elasticity Theory

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

Trefftz approximation scheme on the structure of subdomains-blocks for the problems of the gradient elasticity is proposed. This scheme based on the analytical representation for the gradient elasticity solutions of Papkovich–Neuber type. Independent in blocks, complete systems of functions are used for approximation, that analytically exact satisfy the initial fourth-order equations. It is shown that the generalized Trefftz scheme allows simultaneously with minimizing the energy functional to stitch together all the necessary quantities on the block boundaries: functions, their derivatives, cohesive moments and surface forces. It is achieved exclusively due to the analytical construction of the used functions. The paper gives a derivation of the Papkovich–Neuber representation for the gradient elasticity and formulates the uniqueness conditions. The analytical representation of the solution has a great advantage over the finite element one, since it opens up the possibility of constructing finite elements on unstructured meshes with independent local shape functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

REFERENCES

  1. N. Bakhvalov and G. Panasenko, Homogenization: Averaging Processes in Periodic Media (Kluwer Academic, Dordrecht, 1989).

    Book  Google Scholar 

  2. J. D. Eshelby, ‘‘The determination of the elastic field of an ellipsoidal inclusion and related problems,’’ Proc. R. Soc. London, Ser. A 241, 376–396 (1957).

    Article  MathSciNet  Google Scholar 

  3. R. M. Christensen, Mechanics of Composite Materials (Wiley, New York, 1979).

    Google Scholar 

  4. D. B. Volkov-Bogorodsky, Yu. G. Evtushenko, V. I. Zubov, and S. A. Lurie, ‘‘Calculation of deformations in nanocomposites using the block multipole method with the analytical–numerical account of the scale effects,’’ Comput. Math. Math. Phys. 46, 1234–1253 (2006).

    Article  MathSciNet  Google Scholar 

  5. D. B. Volkov-Bogorodsky and S. A. Kharchenko, ‘‘Parallel version of the analytic-numerical block method for coupled problems of wave vibroacoustics,’’ Vestn. Nizhegor. Univ. Lobachevskogo 5, 202–209 (2009).

    Google Scholar 

  6. D. B. Volkov-Bogorodsky, G. B. Sushko, and S. A. Kharchenko, ‘‘Combined MPI+threads parallel realization of the block method for modelling thermal processes in structurally inhomogeneous media,’’ Vychisl. Metody Programm. 11, 127–136 (2010).

    Google Scholar 

  7. D. B. Volkov-Bogorodskii, ‘‘Radial multipliers method in mechanics of inhomogeneous media with multi-layered inclusions,’’ Mekh. Kompoz. Mater. Konstr. 22 (1), 12–39 (2016).

    Google Scholar 

  8. D. B. Volkov-Bogorodskii and S. A. Lurie, ‘‘Solution of the Eshelby problem in gradient elasticity for multilayer spherical inclusions,’’ Mech. Solids 51, 161–176 (2016).

    Article  Google Scholar 

  9. S. G. Mikhlin, Variational Methods in Mathematical Physics (Macmillan, New York, 1964).

    MATH  Google Scholar 

  10. P. M. Morse and H. Feshbach, Methods of Theoretical Physics. Part 2 (McGraw-Hill, New York, 1953).

    MATH  Google Scholar 

  11. A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics, Vol. 39 of International Series of Monographs on Pure and Applied Mathematics (Pergamon, New York, 1963).

  12. A. I. Borisenko and I. E. Tarapov, Vector Analysis and Beginnings of Tensor Calculus (Vyssh. Shkola, Moscow, 1966) [in Russian].

    Google Scholar 

  13. V. S. Vladimirov, Equations of Mathematical Physics (Marcel Dekker, New York, 1971).

    MATH  Google Scholar 

  14. N. S. Koshlyakov, E. B. Glinner, and M. M. Smirnov, Differential Equations of Mathematical Physics (North-Holland, Amsterdam, 1964).

    Google Scholar 

  15. P. F. Papkovich, ‘‘Solution générale des équations différentielles fondamentales de l’élasticité, exprimeé par trois fonctiones harmoniques,’’ C. R. Acad. Sci., Paris 195, 513–515 (1932).

  16. H. Neuber, ‘‘Ein neuer ansatz zur lösung raümlicher probleme der elastizitätstheorie,’’ Zeitschr. Angew. Math. Mech. 14, 203–212 (1934).

    Article  Google Scholar 

  17. W. Nowacki, Theory of Micropolar Elasticity (Springer, Wien, 1970).

    Book  Google Scholar 

  18. J. M. Doyle, ‘‘A general solution for strain-gradient elasticity theory,’’ J. Math. Anal. Appl. 27, 171–180 (1969).

    Article  Google Scholar 

  19. D. B. Volkov-Bogorodskii, ‘‘Radial multiplier method in problems of mechanics of inhomogeneous media with multilayer inclusions,’’ Mekh. Kompoz. Mater. Konstr. 22 (1), 12–39 (2016).

    Google Scholar 

  20. S. Lurie, D. Volkov-Bogorodskiy, E. Moiseev, and A. Kholomeeva, ‘‘Radial multipliers in solutions of the Helmholtz equations,’’ Integral Transforms Spec. Funct. 30, 254–263 (2019).

    Article  MathSciNet  Google Scholar 

  21. S. A. Lurie and D. B. Volkov-Bogorodskiy, ‘‘On the radial multipliers method in the gradient elastic fracture mechanics,’’ Lobachevskii J. Math. 40 (7), 984–991 (2019).

    Article  MathSciNet  Google Scholar 

  22. D. B. Volkov-Bogorodskiy and E. I. Moiseev, ‘‘Systems of functions consistent with inhomogeneities of elliptic and spheroidal shapes in problems of continuum mechanics,’’ Lobachevskii J. Math. 40 (7), 1016–1024 (2019).

    Article  MathSciNet  Google Scholar 

Download references

Funding

The first author acknowledge the financial support of the Russian Science Foundation under the grant 20-41-04404 issued to the Institute of Applied Mechanics of Russian Academy of Sciences (theoretical statement and analytical realization of Treftz method for gradient elasticity) and second author acknowledge the financial support of the Russian Foundation of Basic Research by grants no. 18-29-10085 mk (theoretical part in justification of generalized Papkovich–Neuber representation in gradient elasticity).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. B. Volkov-Bogorodskiy.

Additional information

(Submitted by A. M. Elizarov)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volkov-Bogorodskiy, D.B., Moiseev, E.I. Generalized Trefftz Method in the Gradient Elasticity Theory. Lobachevskii J Math 42, 1944–1953 (2021). https://doi.org/10.1134/S1995080221080321

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080221080321

Keywords:

Navigation