Skip to main content
Log in

An adaptive discontinuous finite volume element method for the Allen-Cahn equation

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, the discontinuous finite volume element method (DFVEM) is considered to solve the Allen-Cahn equation which contains strong nonlinearity. The method is based on the DFVEM in space and the backward Euler method in time. The energy stability and unique solvability of the proposed fully discrete scheme are derived. The error estimates for the semi-discrete and fully discrete scheme are also established. A series of numerical experiments verify the efficiency of the proposed numerical method. The results show that our method can not only accurately capture the dynamic information of the phase transition, but also ensure the stability of the system during long-term numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, Y., Lee, H.G., Kim, J.: A fast, robust, and accurate operator splitting method for phase-field simulations of crystal growth. J. Cryst. Growth. 321(1), 176–182 (2011)

    Article  Google Scholar 

  2. Zhao, Y., Zhao, C., Xu, Z.: Numerical study of solid-liquid phase change by phase field method. Comput. Fluids. 164, 94–101 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  3. Feng, X., Li, Y.: Analysis of symmetric interior penalty discontinuous Galerkin methods for the Allen-Cahn equation and the mean curvature flow. IMA. J. Numer. Anal. 35(4), 1622–1651 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Lei, Y., Cheng, T.L., Abernathy, H., Epting, W., Kalapos, T., Hackett, G., Wen, Y.: Phase field simulation of anode microstructure evolution of solid oxide fuel cell through \( Ni(OH)_2 \) diffusion. J. Power. Sources. 482, 367–383 (2010)

    Google Scholar 

  5. Levitas, V.I., Lee, D.W., Preston. D.L.: Interface propagation and microstructure evolution in phase field models of stress-induced martensitic phase transformations. Int. J. Plasticity. 26(3), 395–422 (2010)

  6. Takaki, T., Yamanaka, A., Tomita, Y.: Phase-field modeling and simulation of nucleation and growth of recrystallized grains. Mater. Sci. Forum. 558–559(2), 1195–1200 (2007)

    Article  Google Scholar 

  7. Elder, K.R., Thornton, K.S., Hoyt, J.J.: The kirkendall effect in the phase field crystal model. Philos. Mag. 91(1), 151–164 (2011)

    Article  Google Scholar 

  8. Tu, X., Ray, A., Ghosh, S.: A coupled crystal plasticity FEM and phase-field model for crack evolution in microstructures of 7000 series aluminum alloys. Eng. Fract. Mech. 230, 106970 (2020)

    Article  Google Scholar 

  9. Meher, R., Gohil, V.P.: Modelling of counter current imbibition phenomenon in two-phase fluid flows through fractured heterogeneous porous media under the effect of magnetic field. Int. J. Comput. Mat. Sci. 9(2), 2050006 (2020)

    Google Scholar 

  10. Zelepukina, E.V., Zubov, V.A., Merkin, A.A., Mironova. T.V.: Analysis of the amplitude and phase structure of transmitting media with probing field registration in the image plane. Opt. Spectrosc+. 93(5),752–756 (2002)

  11. Esedog, S., Tsai, Y.H.R.: Threshold dynamics for the piecewise constant Mumford-Shah functional. J. Comput. Phys. 211(1), 367–384 (2006)

  12. Lee, H.G., Shin, J., Lee. J.Y.: First and second order operator splitting methods for the phase field crystal equation. J. Comput. Phys. 299, 82–91 (2015)

  13. Feng, X., Song, H., Tao, T., Jiang, Y.: Nonlinear stability of the implicit-explicit methods for the Allen-Cahn equation. Inverse Probl. Imaging. 7(3), 679 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Rafalko, G., Mosdorf, R., Górski, G.: Two-phase flow pattern identification in minichannels using image correlation analysis. Int. Commum. Heat. Mass. 113, 104508 (2020)

    Article  Google Scholar 

  15. Steinbach, I., Nestler, B., Seesselberg, M., Prieler, R., Schmitz, G.T., Rezende, J.L.L., Pezzolla, F.: A phase field concept for multiphase systems. Physica. D. 94(3), 135–147 (1996)

    Article  MATH  Google Scholar 

  16. Fan, D., Chen, L.: Computer simulation of grain growth using a continuum field model. Acta. Mater. 45(2), 611–622 (1997)

    Article  Google Scholar 

  17. Kobayashi, R., Carter, W.C., Warren, J.A.: A continuum model of grain boundaries. Physica. D. 140(1–2), 141–150 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Herndon, J.M.: Solar system processes underlying planetary formation, geodynamics, and the georeactor. Earth. Moon. and Planets. 99(1–4), 53–89 (2006)

    Google Scholar 

  19. Iwashita, T., Hayase, Y., Nakanishi, H.: Phase field model for dynamics of sweeping interface. J. Phys. Soc. Jpn. 74(6), 1657–1660 (2005)

    Article  Google Scholar 

  20. Zhang, B., He, Z.: The preparation of Agi/Au/foam-Cu as a framework of composite for water-based cool storage phase-change material with low supercooling. Thermochim. Acta. 674, 52–57 (2019)

    Article  Google Scholar 

  21. Colli, P., Gilardi, G., Hilhorst, D.: On a Cahn-Hilliard type phase field system related to tumor growth. Discrete. Contin. Dyn. Syst. Ser. A. 35(6), 2423–2442 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Xu, J., Vilanova, G., Gómez, H.: Phase-field model of vascular tumor growth: Three-dimensional geometry of the vascular network and integration with imaging data. Comput. Methods Appl. Mech. Engrg. 359, 112648 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhu, J., Lu, X., Balieu, R., Kringos, N.: Modelling and numerical simulation of phase separation in polymer modified bitumen by phase-field method. Mater. Design. 107, 322–332 (2016)

    Article  Google Scholar 

  24. Liang, M., Xin, X., Fan, W., Wang, H., Sun, W.: Phase field simulation and microscopic observation of phase separation and thermal stability of polymer modified asphalt. Constr. Build. Mater. 204, 132–143 (2019)

    Article  Google Scholar 

  25. Elliott. C.M and Stinner. B.: Modeling and computation of two phase geometric biomembranes using surface finite elements. J. Comput. Phys. 229(18), 6585–6612 (2010)

  26. Boettinger, W.J., Warren, J.A., Beckermann, C., Karma, A.: Phase-field simulation of solidification. Annu. Rev. Mater. Sci. 32(1), 163–194 (2002)

    Article  Google Scholar 

  27. Feng, X.: Fully discrete finite element approximations of the Navier-Stokes-Cahn-Hilliard diffuse interface model for two-phase fluid flows. SIAM J. Numer. Anal. 44(3), 1049–1072 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Feng, X., Li, Y., Zhang, Y.: A fully discrete mixed finite element method for the stochastic Cahn-Hilliard equation with gradient-type multiplicative noise. J. Sci. Comput. 83(1), 1–24 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  29. Feng, X., Karakashian, O.A.: Fully discrete dynamic mesh discontinuous Galerkin methods for the Cahn-Hilliard equation of phase transition. Math. Comput. 76(259), 1093–1117 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Feng, X., Prohl, A.: Numerical analysis of the Allen-Cahn equation and approximation for mean curvature flows. Numer. Math. 94(1), 33–65 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. Bhowmick, S., Liu, G.: A phase-field modeling for brittle fracture and crack propagation based on the cell-based smoothed finite element method. Eng. Fract. Mech. 204, 369–387 (2018)

    Article  Google Scholar 

  32. Bai, F., He, X., Yang, X., Zhou, R., Wang, C.: Three dimensional phase-field investigation of droplet formation in microfluidic flow focusing devices with experimental validation. Int. J. Multiphase. Flow. 93, 130–141 (2017)

    Article  MathSciNet  Google Scholar 

  33. Gao, Y., He, X., Mei, L., Yang, X.: Decoupled, linear, and energy stable finite element method for the Cahn-Hilliard-Navier-Stokes-Darcy phase field model. SIAM J. Sci. Comput. 40(1), B110–B137 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  34. Han, D., Wang, X.: A second order in time, uniquely solvable, unconditionally stable numerical scheme for Cahn-Hilliard-Navier-Stokes equation. J. Comput. Phys. 290, 139–156 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. Hua, J., Lin, P., Liu, C., Wang, Q.: Energy law preserving \( {C}^0 \) finite element schemes for phase field models in two-phase flow computations. J. Comput. Phys. 230(19), 7115–7131 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Yang, J., Mao, S., He, X., Yang, X., He, Y.: A diffuse interface model and semi-implicit energy stable finite element method for two-phase magnetohydrodynamic flows. Comput. Methods. Appl. Mech. Engrg. 356, 435–464 (2019)

  37. Du, Q., Nicolaides, R.A.: Numerical analysis of a continuum model of phase transition. SIAM J. Numer. Anal. 28(5), 1310–1322 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  38. Chen, Y., Huang, Y., Yi, N.: A SCR-based error estimation and adaptive finite element method for the Allen-Cahn equation. Comput. Math. Appl. 78(1), 204–223 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  39. Chen, Y., Huang, Y., Yi, N.: Recovery type a posteriori error estimation of adaptive finite element method for Allen-Cahn equation. J. Comput. Appl. Math. 369, 112574 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  40. Shi, Y.: A phase field method for the numerical simulation of rigid particulate in two-phase flows. Fluid. Dyn. Res. 52(1), 015512 (2020)

    Article  MathSciNet  Google Scholar 

  41. Xu, J., Li, Y., Wu, S., Bousquet, A.: On the stability and accuracy of partially and fully implicit schemes for phase field modeling. 345. (2019)

  42. Li, X., Shen, J., Rui, H.: Energy stability and convergence of SAV block-centered finite difference method for gradient flows. Math. Comput. 88(319), 2047–2068 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  43. Chen, M.H., Bollada, P.C., Jimack, P.K.: Dynamic load balancing for the parallel, adaptive, multigrid solution of implicit phase-field simulations. Int. J. Numer. Anal. Mod. 16(2), 297–318 (2019)

    MathSciNet  MATH  Google Scholar 

  44. Chen, Y., Shen, J.: Efficient, adaptive energy stable schemes for the incompressible Cahn-Hilliard-Navier-Stokes phase-field model. J. Comput. Phys. 308, 40–56 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  45. Yang, J., Du, Q., Zhang, W.: Uniform \( L^p \)-bound of the Allen-Cahn equation and its numercal discretization. Int. J. Numer. Anal. Mod. 15, 213–227 (2018)

    MATH  Google Scholar 

  46. Liu, C., Shen, J.: A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method. Physica. D. 179(3–4), 211–228 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  47. Shen, J., Yang, X.: Decoupled, energy stable schemes for phase-field models of two-phase incompressible flows. SIAM J. Numer. Anal. 53(1), 279–296 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  48. Yang, X., Zhao, J., He, X.: Linear, second order and unconditionally energy stable schemes for the viscous Cahn-Hilliard equation with hyperbolic relaxation using the invariant energy quadratization method. J. Comput. Appl. Math. 343(1), 80–97 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  49. Chessa. J and Belytschko. T.: An extended finite element method for two-phase fluids. J. Appl. Mech. 70(1), 10–17 (2003)

  50. Mohammadnejad, T., Khoei, A.R.: An extended finite element method for fluid flow in partially saturated porous media with weak discontinuities; the convergence analysis local enrichment strategies. Comput. Mech. 51(3), 327–345 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  51. Frank, F., Liu, C., Alpak, F.O., Rivière. B.: A finite volume\(/\)discontinuous Galerkin method for the advective Cahn-Hilliard equation with degenerate mobility on porous domains stemming from micro-CT imaging. Computat. Geosci. 22(2), 543–563 (2018)

  52. Karasözen, B., Filibeliouǧlu, A.S., Uzunca, M.: Energy stable discontinuous Galerkin finite element method for the Allen-Cahn equation. Int. J. Comp. Meth-Sing. 15(03), 1850013 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  53. Jobelin, M., Lapuerta, C., Latché, J.C., Angot, P., Piar, B.: A finite element penalty-projection method for incompressible flows. J. Comput. Phys. 217(2), 502–518 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  54. Engwer, C., Schumacher, L.: A phase field approach to pressurized fractures using discontinuous Galerkin methods. Math. Comput. Simulat. 137, 266–285 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  55. Li, R., Gao, Y., Chen, J., Zhang, L., He, X., Chen, Z.: Discontinuous finite volume element method for a coupled Navier-Stokes-Cahn-Hilliard phase field model. Adv. Comput. Math. 46(2), 1–35 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  56. Hirshikesh, Pramod, A.L.N., Annabattula. R.K., Ooi, E.T., Song, C., Natarajan, S.: Adaptive phase-field modeling of brittle fracture using the scaled boundary finite element method. Comput. Meth. Appl. Mech. Eng. 355, 284–307 (2019)

  57. Pramod, A.L.N., Hirshikesh, Natarajan, S., Ooi, E.T.: Application of adaptive phase-field scaled boundary finite element method for functionally graded materials. Int. J. Comp. Meth-Sing 18(03), 2041007 (2021)

  58. Zhang, Z., Tang, H.: An adaptive phase field method for the mixture of two incompressible fluids. Comput. Fluids. 36(8), 1307–1318 (2007)

    Article  MATH  Google Scholar 

  59. Lattanzio, C., Mascia, C., Plaza. R.G., Simeoni, C.: Kinetic schemes for assessing stability of traveling fronts for the Allen-Cahn equation with relaxation. Appl. Numer. Math. 141, 234–247 (2019)

  60. Li, J., Lin, X., Chen, Z.: Finite volume method for the incompressible flows. Springer, Berlin

  61. Li, J., Chen, Z.: A new stabilized finite volume method for the stationary Stokes equations. Adv. Comput. Math. 30(2), 141–152 (2009)

  62. Li, J., Chen, Z.: On the semi-discrete stabilized finite volume method for the transient Navier-Stokes equations. Adv. Comput. Math. 38(2), 281–320 (2013)

  63. Li, R., Li, J., He, X., Chen, Z.: A stabilized finite volume element method for a coupled Stokes-Darcy problem. Appl. Numer. Math. 133, 2–24 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  64. Li, J., Chen, Z.: Optimal \(l^2, h^1\) and \(l^\infty \) analysis of finite volume methods for the stationary Navier-Stokes equations with large data. Numer. Math. 126, 75–101 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  65. Li, J.: Numerical methods for the incompressible Navier-Stokes equations. Science Press, Beijing (2019)

    Google Scholar 

  66. Rebholz, L.G., Wise, S.M., Xiao, M.: Penalty-projection schemes for the Cahn-Hilliard Navier-Stokes diffuse interface model of two phase flow, and their connection to divergence-free coupled schemes. Int. J. Numer. Anal. Model. 15, 649–676 (2018)

    MathSciNet  MATH  Google Scholar 

  67. Liang, H., Li, Y., Chen, J., Xu, J.: Axisymmetric lattice Boltzmann model for multiphase flows with large density ratio. Int. J. Heat. Mass. Tran. 130, 1189–1205 (2019)

    Article  Google Scholar 

  68. Hu, Y., Li, D., Niu, X., Shu, S.: A diffuse interface lattice Boltzmann model for thermocapillary flows with large density ratio and thermophysical parameters contrasts. Int. J. Heat. Mass. Tran. 138, 809–824 (2019)

    Article  Google Scholar 

  69. Aldakheel, F., Hudobivnik, B., Wriggers, P.: Virtual element formulation for phase-field modeling of ductile fracture. Int. J. Multtscale. Com. 17(2), 181–200 (2019)

    Article  MATH  Google Scholar 

  70. Aldakheel, F., Hudobivnik, B., Hussein, A., Wriggers, P.: Phase-field modeling of brittle fracture using an efficient virtual element scheme. Comput. Meth. Appl. Mech. Eng. 341(1), 443–466 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  71. Li, J., Chen, Z., He, Y.: A stabilized multi-level method for non-singular finite volume solutions of the stationary 3D Navier-Stokes equations. Numer. Math. 122(2), 279–304 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  72. Lin, F., He, X., Wen, X.: Fast, unconditionally energy stable large time stepping method for a new Allen-Cahn type square phase-field crystal model. Appl. Math. Lett. 98, 248–255 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  73. Shen, J., Yang, X.: Numerical approximations of Allen-Cahn and Cahn-Hilliard equations. Discrete. Contin. Dyn. Syst. Ser. A. 28(4), 1669–1691 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  74. Xu, C., Chen, C., Yang, X., He, X.: Numerical approximations for the hydrodynamics coupled binary surfactant phase field model: Second-order, linear, unconditionally energy stable schemes. Commun. Math. Sci. 17(3), 835–858 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  75. Yang, X.: Error analysis of stabilized semi-implicit method of Allen-Cahn equation. Discrete. Cont. Dyn-B. 11(4), 1057–1070 (2009)

    MathSciNet  MATH  Google Scholar 

  76. Zhang, J., Chen, C., Yang, X., Chu, Y., Xia, Z.: Efficient, non-iterative, and second-order accurate numerical algorithms for the anisotropic Allen-Cahn equation with precise nonlocal mass conservation. J. Comput. Appl. Math. 363, 444–463 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  77. Li, J., Chen, Z., Shen, L.: Convergence and stability of a stabilized finite volume method for the stationary Navier-Stokes equations. BIT. 50(4), 823–842 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  78. Shen, L., Li, J., Chen, Z.: Analysis of a stabilized finite volume method for the transient Stokes equations. Int. J. Numer. Anal. Mod. 6(3), 505–519 (2009)

    MathSciNet  MATH  Google Scholar 

  79. Li, J., Bai, Y., Zhao, X.: Modern numerical methods for mathematical physics equations. Science Press, Beijing (2023)

    Google Scholar 

  80. Allen, S.M., Cahn, J.W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta. Metall. 27(6), 1085–1095 (1979)

    Article  Google Scholar 

  81. Ye, X.: A new discontinuous finite volume method for elliptic problems. SIAM J. Numer. Anal. 42(3), 1062–1072 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  82. Liu, J., Mu, L., Ye, X., Jari, R.: Convergence of the discontinuous finite volume method for elliptic problems with minimal regularity. J. Compt. Appl. Math. 236(17), 4537–4546 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  83. Liu, J., Mu, L., Ye, X.: An adaptive discontinuous finite volume method for elliptic problems. J. Comput. Appl. Math. 235(18), 5422–5431 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  84. Bi, C., Liu, M.: A discontinuous finite volume element method for second order elliptic problems. Numer. Methods Partial Differ. Equ. 28(2), 425–440 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  85. Bi, C., Geng, J.: Discontinuous finite volume element method for parabolic problems. Numer. Methods Partial Differ. Equ. 26(2), 367–383 (2010)

    MathSciNet  MATH  Google Scholar 

  86. Zhang, K. Gan, X.: The discontinuous finite volume element method for parabolic and hyperbolic equations. Journal of Northwest Normal University(Natural Science). 26(2), 367–383 (2010)

  87. Li, R., Zhang, Y., Wu, J., Chen, Z.: Discontinuous finite volume element method for Darcy flows in fractured porous media. J. Comput. Appl. Math. 381, 113025 (2021)

  88. Ye, X.: A discontinuous finite volume method for the Stokes problems. SIAM J. Numer. Anal. 44(1), 183–198 (2006)

  89. Li, R., Gao, Y., Li, J., Chen, Z.: Discontinuous finite volume element method for a coupled non-stationary Stokes-Darcy problem. J. Sci. Comput. 74(2), 693–727 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  90. Wang, G., He, Y., Li, R.: Discontinuous finite volume methods for the stationary Stokes-Darcy problem. Int. J. Numer. Meth. Eng. 107(5), 395–418 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  91. Yin, Z., Jiang, Z., Xu, Q.: A discontinuous finite volume method for the Darcy-Stokes equations. J. Appl. Math. 2012(3), 401–430 (2012)

    MathSciNet  MATH  Google Scholar 

  92. Chen, S.: A discontinuous finite volume method for a coupled fracture model. Comput. Math. Appl. 78(10), 3429–3449 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  93. Zhang, T., Tang, L.: A discontinuous finite volume element method based on bilinear trial functions. Int. J. Comp. Meth-Sing. 14(03), 1750025 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  94. Kumar, S., Ruiz-Baier, R., Sandilya, R.: Discontinuous finite volume element methods for the optimal control of Brinkman equations. Springer, Cham, pp. 307–315 (2017)

  95. Chou, S., Ye, X.: Unified analysis of finite volume methods for second order elliptic problems. SIAM J. Numer. Anal. 45, 1639–1653 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  96. Diegel, A.E., Wang, C., Wang, X., Wise, S.M.: Convergence analysis and error estimates for a second order accurate finite element method for the Cahn-Hilliard-Navier-Stokes system. Numer. Math. 137, 495–534 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  97. Feng, X., Tang, T., Yang, J.: Stabilized Crank-Nicolson/Adams-Bashforth schemes for phase field models. E. Asian. J. Appl. Math. 3(1), 59–80 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  98. Yan, Y., Chen, W., Wang, C., Wise, S.M.: A second-order energy stable BDF numerical scheme for the Cahn-Hilliard equation. Commun. Comput. Phys. 23(2), (2018)

  99. Cheng, K., Feng, W., Wang, C., Wise, S.M.: An energy stable fourth order finite difference scheme for the Cahn-Hilliard equation. J. Comput. Appl. Math. 362(2), 574–595 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  100. Chen, W., Wang, X., Yan, Y., Zhang, Z.: A second order BDF numerical scheme with variable steps for the Cahn-Hilliard equation. SIAM J. Numer. Anal. 57(1), 495–525 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  101. Guo, J., Wang, C., Wise, S.M., Yue, X.: An \(h^2\) convergence of a second-order convex-splitting, finite difference scheme for the three-dimensional Cahn-Hilliard equation. Commun. Math. Sci. 14(2), 489–515 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  102. Cheng, K., Wang, C., Wise, S.M., Yue, X.: A second-order, weakly energy-stable pseudo-spectral scheme for the Cahn-Hilliard equation and its solution by the homogeneous linear iteration method. J. Sci. Comput. 39(3), 1083–1114 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  103. Diegel, A.E., Wang, C., Wise, S.M.: Stability and convergence of a second-order mixed finite element method for the Cahn-Hilliard equation. IMA. J. Numer. Anal. 36(4), 1867–1897 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  104. Guo, J., Wang, C., Wise, S.M., Yue. X.: An improved error analysis for a second-order numerical scheme for the Cahn-Hilliard equation. J. Comput. Appl. Math. 388, 113300 (2021)

  105. Cheng, K., Wang, C., Null, S., Wu, Y.: A third order accurate in time, BDF-type energy stable scheme for the Cahn-Hilliard equation. Numer. Math-Theory. Me. 15(2), 279–303 (2022)

    MathSciNet  MATH  Google Scholar 

  106. Yang, X.: Linear, first and second-order, unconditionally energy stable numerical schemes for the phase field model of homopolymer blends. J. Comput. Phys. 327, 294–316 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  107. Shen, J., Xu, J., Yang, J.: The scalar auxiliary variable SAV approach for gradient flows. J. Comput. Phys. 353, 407–416 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  108. Shen, J., Xu, J., Yang, J.: Discontinuous finite volume element method for a coupled Navier-Stokes-Cahn-Hilliard phase field model. Adv. Comput. Math. 46(2), 1–35 (2020)

    MathSciNet  Google Scholar 

  109. Akrivis, G., Li, Y., Li, D.: Energy-decaying extrapolated RK-SAV methods for the Allen-Cahn and Cahn-Hilliard equations. SIAM J. Sci. Comput. 41, A3703–A3727 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  110. Gao, M., Wang, X.: A gradient stable scheme for a phase field model for the moving contact line problem. J. Comput. Phys. 231(4), 1372–1386 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  111. Chen, L.: iFEM: an innovative finite element methods package in MATLAB. University of Maryland, Preprint (2008)

    Google Scholar 

  112. Yang, X.: A novel fully decoupled scheme with second-order time accuracy and unconditional energy stability for the Navier-Stokes equations coupled with mass-conserved Allen-Cahn phase-field model of two-phase incompressible flow. Int. J. Numer. Meth. Eng. 122(5), 1283–1306 (2021)

  113. Zhang, F., Xu, Y., Chen, F., Guo, H.: Interior penalty discontinuous Galerkin based isogeometric analysis for Allen-Cahn equations on surfaces. Commun. Comput. Phys. 18(05), 1380–1416 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

Jian Li is financially supported in part by NSF of China (No. 11771259)Shaanxi Provincial Joint Laboratory of Artificial Intelligence (No. 2022JC-SYS-05), Innovative team project of Shaanxi Provincial Department of Education (No. 21JP013) and Shaanxi Province Natural Science basic research program key project (No. 2023-JC-ZD-02). Rui Li is financially supported by the National Natural Science Foundation of China (No. 11901372), the Young Talent fund of University Association for Science and Technology in Shaanxi (No. 20200504), the Fundamental Research Fund for the Central Universities of China (No. GK202103004), and Sinopec Key Laboratory of Geophysics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests. We confirm that the manuscript is original, has been submitted solely to this journal and is not published, in press, or submitted elsewhere.

Additional information

Communicated by: Long Chen

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Zeng, J. & Li, R. An adaptive discontinuous finite volume element method for the Allen-Cahn equation. Adv Comput Math 49, 55 (2023). https://doi.org/10.1007/s10444-023-10031-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-023-10031-5

Keywords

Navigation