Skip to main content

Advertisement

SpringerLink
Go to cart
  1. Home
  2. Advances in Computational Mathematics
  3. Article
Efficient and certified solution of parametrized one-way coupled problems through DEIM-based data projection across non-conforming interfaces
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Scalable and Robust Dual-Primal Newton–Krylov Deluxe Solvers for Cardiac Electrophysiology with Biophysical Ionic Models

19 September 2022

Ngoc Mai Monica Huynh, Luca F. Pavarino & Simone Scacchi

Gating-enhanced IMEX splitting methods for cardiac monodomain simulation

31 January 2019

Kevin R. Green & Raymond J. Spiteri

Newton–Krylov-BDDC deluxe solvers for non-symmetric fully implicit time discretizations of the bidomain model

08 November 2022

Ngoc Mai Monica Huynh

Hyper-reduced order models for parametrized unsteady Navier-Stokes equations on domains with variable shape

27 November 2019

Niccolò Dal Santo & Andrea Manzoni

The INTERNODES Method for Non-conforming Discretizations of PDEs

07 May 2019

Paola Gervasio & Alfio Quarteroni

Robust treatment of cross-points in optimized Schwarz methods

22 May 2022

Xavier Claeys & Emile Parolin

Spectral Coarse Spaces for the Substructured Parallel Schwarz Method

16 April 2022

Gabriele Ciaramella & Tommaso Vanzan

Reduced basis method for the adapted mesh and Monte Carlo methods applied to an elliptic stochastic problem

26 April 2019

Noura Morcos & Toni Sayah

On the existence–uniqueness and computation of solution of a class of cardiac electric activity models

01 September 2019

Meena Pargaei & B. V. Rathish Kumar

Download PDF
  • Open Access
  • Published: 16 March 2023

Efficient and certified solution of parametrized one-way coupled problems through DEIM-based data projection across non-conforming interfaces

  • Elena Zappon  ORCID: orcid.org/0000-0002-0608-16361,
  • Andrea Manzoni1 &
  • Alfio Quarteroni1,2 

Advances in Computational Mathematics volume 49, Article number: 21 (2023) Cite this article

  • 132 Accesses

  • Metrics details

Abstract

One of the major challenges of coupled problems is to manage nonconforming meshes at the interface between two models and/or domains, due to different numerical schemes or domain discretizations employed. Moreover, very often complex submodels depend on (e.g., physical or geometrical) parameters, thus making the repeated solutions of the coupled problem through high-fidelity, full-order models extremely expensive, if not unaffordable. In this paper, we propose a reduced order modeling (ROM) strategy to tackle parametrized one-way coupled problems made by a first, master model and a second, slave model; this latter depends on the former through Dirichlet interface conditions. We combine a reduced basis method, applied to each subproblem, with the discrete empirical interpolation method to efficiently interpolate or project Dirichlet data across either conforming or non-conforming meshes at the domains interface, building a low-dimensional representation of the overall coupled problem. The proposed technique is numerically verified by considering a series of test cases involving both steady and unsteady problems, after deriving a posteriori error estimates on the solution of the coupled problem in both cases. This work arises from the need to solve staggered cardiac electrophysiological models and represents the first step towards the setting of ROM techniques for the more general two-way Dirichlet-Neumann coupled problems solved with domain decomposition sub-structuring methods, when interface non-conformity is involved.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. Bazilevs, Y., Takizawa, K., Tezduyar, T.: Computational Fluid-Structure Interaction: Methods and Applications. https://doi.org/10.1002/9781118483565 (2013)

  2. Discacciati, M., Quarteroni, A.: Navier-Stokes/Darcy coupling: modeling, analysis, and numerical approximation. Revista Matemática Complutense 22. https://doi.org/10.5209/rev_REMA.2009.v22.n2.16263 (2009)

  3. Korvink, J., Paul, O.: MEMS: A Practical Guide to Design, Analysis and Applications. https://doi.org/10.1007/978-3-540-33655-6 (2005)

  4. Piersanti, R., Regazzoni, F., Salvador, M., Corno, A., Dede’, L., Vergara, C., Quarteroni, A.: 3D-0D closed-loop model for the simulation of cardiac biventricular electromechanics. arXiv:2108.01907 (2021)

  5. Quarteroni, A., Dede, L., Manzoni, A., Vergara, C.: Mathematical Modelling of the Human Cardiovascular System: Data, Numerical Approximation, Clinical Applications. https://doi.org/10.1017/9781108616096 (2019)

  6. Wong, J., Göktepe, S., Kuhl, E.: Computational modeling of chemo-electro-mechanical coupling: a novel implicit monolithic finite element approach. International Journal for Numerical Methods in Biomedical Engineering 29. https://doi.org/10.1002/cnm.2565 (2013)

  7. Zhao, Y., Su, X.: Computational Fluid-Structure Interaction: Methods, Models, and Applications. Academic Press, New York (2018)

    Google Scholar 

  8. Bonomi, D., Manzoni, A., Quarteroni, A.: A matrix DEIM technique for model reduction of nonlinear parametrized problems in cardiac mechanics. Comput. Methods Appl. Mech. Eng. 324. https://doi.org/10.1016/j.cma.2017.06.011 (2017)

  9. Forti, D., Rozza, G.: Efficient geometrical parametrisation techniques of interfaces for reduced-order modelling: application to fluid-structure interaction coupling problems. International Journal of Computational Fluid Dynamics 28 (3-4), 158–169 (2014). https://doi.org/10.1080/10618562.2014.932352

    Article  MathSciNet  MATH  Google Scholar 

  10. Fresca, S., Manzoni, A., Dede, L., Quarteroni, A.: POD-enhanced deep learning-based reduced order models for the real-time simulation of cardiac electrophysiology in the left atrium. Front. Physiol. 12. https://doi.org/10.3389/fphys.2021.679076 (2021)

  11. Geneser, S., Kirby, R., MacLeod, R.: Application of stochastic finite element methods to study the sensitivity of ECG forward modeling to organ conductivity. IEEE Transaction on Biomedical Engineering 55(1), 31–40 (2008). https://doi.org/10.1109/TBME.2007.900563

    Article  Google Scholar 

  12. Pacciarini, P., Rozza, G.: Reduced basis approximation of parametrized advection-diffusion PDEs with High Péclet Number. In: Numerical Mathematics and Advanced Applications-ENUMATH 2013, pp 419–426. Springer, Lausanne (2015)

  13. Pagani, S., Manzoni, A., Quarteroni, A.: Numerical approximation of parametrized problems in cardiac electrophysiology by a local reduced basis method. Comput. Methods Appl. Mech. Eng. 340. https://doi.org/10.1016/j.cma.2018.06.003(2018)

  14. Swenson, D., Geneser, S., Stinstra, J., Kirby, R., MacLeod, R.: Cardiac position sensitivity study in the electrocardiographic forward problem using stochastic collocation and boundary element methods. Ann. Biomed. Eng. 39, 2900 (2011). https://doi.org/10.1007/s10439-011-0391-5

    Article  Google Scholar 

  15. Bernardi, C., Maday, Y., Rapetti, F.: Basics and some applications of the mortar element method. GAMM-Mitteilungen 28. https://doi.org/10.1002/gamm.201490020 (2005)

  16. Chan, T., Smith, B., Zou, J.: Overlapping schwarz methods on unstructured meshes usingnon-matching coarse grids. Numer. Math. 73, 149–167 (1996). https://doi.org/10.1007/s002110050189

    Article  MathSciNet  MATH  Google Scholar 

  17. Deparis, S., Forti, D., Gervasio, P., Quarteroni, A.: INTERNODES: an accurate interpolation-based method for coupling the Galerkin solutions of PDEs on subdomains featuring non-conforming interfaces. Computers & Fluids 141. https://doi.org/10.1016/j.compfluid.2016.03.033 (2016)

  18. Gervasio, P., Quarteroni, A.: The INTERNODES method for non-conforming discretizations of PDEs. Communications on Applied Mathematics and Computation 1, 361–401 (2019). https://doi.org/10.1007/s42967-019-00020-1

    Article  MathSciNet  MATH  Google Scholar 

  19. Hesch, C., Gil, A., Arranz Carreño, A., Bonet, J., Betsch, P.: A mortar approach for fluid-structure interaction problems: immersed strategies for deformable and rigid bodies. Comput. Methods Appl. Mech. Eng. 278. https://doi.org/10.1016/j.cma.2014.06.004 (2014)

  20. Quarteroni, A., Valli, A.: Domain Decomposition Methods for Partial Differential Equations. Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (1999)

    MATH  Google Scholar 

  21. Ripepi, M., Verveld, M., Karcher, N., Franz, T., Abu-Zurayk, M., Görtz, S., Kier, T.: Reduced-order models for aerodynamic applications, loads and MDO. CEAS Aeronaut. J. 9. https://doi.org/10.1007/s13272-018-0283-6 (2018)

  22. Amsallem, D., Cortial, J., Farhat, C.: Toward real-time computational-fluid-dynamics-based aeroelastic computations using a database of reduced-order information. AIAA J. 48, 2029–2037 (2010)

    Article  Google Scholar 

  23. Ballarin, F., Rozza, G., Maday, Y.: Reduced-order semi-implicit schemes for fluid-structure interaction problems. In: Benner, P., Ohlberger, M., Patera, A., Rozza, G., Urban, K. (eds.) Model Reduction of Parametrized Systems, pp 149–167. Springer, Cham (2017)

  24. Lassila, T., Quarteroni, A., Rozza, G.: A reduced basis model with parametric coupling for fluid-structure interaction problems. SIAM Journal on Scientific Computing 34(2). https://doi.org/10.1137/110819950 (2012)

  25. Lassila, T., Manzoni, A., Quarteroni, A., Rozza, G.: A reduced computational and geometrical framework for inverse problems in hemodynamics. International Journal for Numerical Methods in Biomedical Engineering 29(7), 741–776 (2013). https://doi.org/10.1002/cnm.2559

    Article  MathSciNet  Google Scholar 

  26. Ballarin, F., Rozza, G.: POD-Galerkin monolithic reduced order models for parametrized fluid-structure interaction problems: POD-galerkin monolithic ROM for parametrized FSI problems. Int. J. Numer. Methods Fluids 82. https://doi.org/10.1002/fld.4252 (2016)

  27. Benner, P., Ohlberger, M., Cohen, A., Willcox, K.: Model Reduction and Approximation: Theory and Algorithms Society for Industrial and Applied Mathematics, Philadelphia, PA. https://doi.org/10.1137/1.9781611974829 (2017)

  28. Hesthaven, J., Rozza, G., Stamm, B.: Certified Reduced Basis Methods for Parametrized Partial Differential Equations. https://doi.org/10.1007/978-3-319-22470-1 (2016)

  29. Quarteroni, A., Manzoni, A., Negri, F.: Reduced Basis Methods for Partial Differential Equations. An Introduction. Springer, Cham (2016)

    MATH  Google Scholar 

  30. Løvgren, A.E., Maday, Y., Rønquist, E.M.: A reduced basis element method for the steady Stokes problem. ESAIM: Mathematical Modelling and Numerical Analysis 40(3), 529–552 (2006). https://doi.org/10.1051/m2an:2006021

    Article  MathSciNet  MATH  Google Scholar 

  31. Iapichino, L., Quarteroni, A., Rozza, G.: A reduced basis hybrid method for the coupling of parametrized domains represented by fluidic networks. Comput. Methods Appl. Mech. Eng. 221–222, 63–82 (2012). https://doi.org/10.1016/j.cma.2012.02.005

    Article  MathSciNet  MATH  Google Scholar 

  32. Iapichino, L., Quarteroni, A., Rozza, G.: Reduced basis method and domain decomposition for elliptic problems in networks and complex parametrized geometries. Computers & Mathematics with Applications 71(1), 408–430 (2016). https://doi.org/10.1016/j.camwa.2015.12.001

    Article  MathSciNet  MATH  Google Scholar 

  33. Pegolotti, L., Pfaller, M.R., Marsden, A.L., Deparis, S.: Model order reduction of flow based on a modular geometrical approximation of blood vessels. Comput. Methods Appl. Mech. Eng. 380, 113762 (2021). https://doi.org/10.1016/j.cma.2021.113762

    Article  MathSciNet  MATH  Google Scholar 

  34. Dal Santo, N., Deparis, S., Manzoni, A., Quarteroni, A.: Multi space reduced basis preconditioners for large-scale parametrized PDEs. SIAM J. Sci. Comput. 40(2), 954–983 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  35. Eftang, J., Patera, A.: A port-reduced static condensation reduced basis element method for large component-synthesized structures: approximation and a posteriori error estimation. Advanced Modeling and Simulation in Engineering Sciences 1, 3 (2014). https://doi.org/10.1186/2213-7467-1-3

    Article  Google Scholar 

  36. P, H., Bao, D., Knezevic, D.J., Patera, A.T.: A static condensation reduced basis element method : approximation and a posteriori error estimation. ESAIM: Mathematical Modelling and Numerical Analysis 47(1), 213–251 (2013). https://doi.org/10.1051/m2an/2012022

    Article  MathSciNet  MATH  Google Scholar 

  37. Barrault, M., Maday, Y., Nguyen, N.C., Patera, A.T.: An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations. C. R. Math. Acad. Sci. Paris 339(9), 667–672 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  38. Chaturantabut, S., Sorensen, D.C.: Nonlinear model reduction via discrete empirical interpolation. SIAM J. Sci. Comput. 32(5), 2737–2764 (2010). https://doi.org/10.1137/090766498

    Article  MathSciNet  MATH  Google Scholar 

  39. Grepl, M., Maday, Y., Nguyen, N., Patera, A.: Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations/ ESAIM: Mathematical Modelling and Numerical Analysis 41. https://doi.org/10.1051/m2an:2007031 (2007)

  40. Maday, Y., Nguyen, N., Patera, A., Pau, G.S.H.: A general multipurpose interpolation procedure: The magic points. Communications on Pure and Applied Analysis 8. https://doi.org/10.3934/cpaa.2009.8.383 (2008)

  41. Negri, F., Manzoni, A., Amsallem, D.: Efficient model reduction of parametrized systems by matrix discrete empirical interpolation. J. Comput. Phys. 303, 431–454 (2015). https://doi.org/10.1016/j.jcp.2015.09.046

    Article  MathSciNet  MATH  Google Scholar 

  42. Boulakia, M., Cazeau, S., Fernández, M., Gerbeau, J.F., Zemzemi, N.: Mathematical modeling of electrocardiograms: a numerical study. Ann. Biomed. Eng. 38, 1071–97 (2010). https://doi.org/10.1007/s10439-009-9873-0

    Article  Google Scholar 

  43. Bjørstad, P.E., Brenner, S.C., Halpern, L., Kim, H.H., Kornhuber, R., Rahman, T., Widlund, O.B.: Domain Decomposition Methods in Science and Engineering XXIV. Lecture Notes in Computational Science and Engineering. Springer, Cham (2018)

    MATH  Google Scholar 

  44. Bernardi, C., Maday, Y., Patera, A.T.: A new non conforming approach to domain decomposition: the mortar element method. A New Non Conforming Approach to Domain Decomposition: The Mortar Element Method 13–51 (1994)

  45. Gervasio, P., Quarteroni, A.: INTERNODES for heterogeneous couplings. In: Bjørstad, P.E., Brenner, S.C., Halpern, L., Kim, H.H., Kornhuber, R., Rahman, T., Widlund, O.B. (eds.) Domain Decomposition Methods in Science and Engineering XXIV, pp 59–71. Springer, Cham (2018)

  46. Gervasio, P., Quarteroni, A.: Analysis of the INTERNODES method for non-conforming discretizations of elliptic equations. Comput. Methods Appl. Mech. Eng. 334. https://doi.org/10.1016/j.cma.2018.02.004 (2018)

  47. Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations. Springer Series in Computational Mathematics. Springer, Berlin (2008). https://doi.org/10.1007/978-3-540-85268-1

    MATH  Google Scholar 

  48. Schroeder, W., Martin, K., Lorensen, B.: The Visualization Toolkit (4th Ed.) (2006)

  49. Deparis, S., Forti, D., Quarteroni, A.: A rescaled localized radial basis function interpolation on non-cartesian and nonconforming grids. SIAM J. Sci. Comput. 36 (2014)

  50. Brenan, K.E., Campbell, S.L., Petzold, L.R.: Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations. Classic in applied mathematics. SIAM, Philadelphia (1995)

  51. Kreiss, O., Ortiz, O.E.: Introduction to Numerical Methods for Time Dependent Differential Equations. Wiley, Hoboken (2014)

    MATH  Google Scholar 

  52. Mckay, M., Beckman, R., Conover, W.: A comparison of three methods for selecting vales of input variables in the analysis of output from a computer code. Technometrics 21, 239–245 (1979). https://doi.org/10.1080/00401706.1979.10489755

    Article  MathSciNet  MATH  Google Scholar 

  53. Iman, R., Helton, J.: An investigation of uncertainty and sensitivity analysis techniques for computer-models. Risk Anal. 8, 71–90 (2006). https://doi.org/10.1111/j.1539-6924.1988.tb01155.x

    Article  Google Scholar 

  54. Farhat, C., Grimberg, S., Manzoni, A., Quarteroni, A.: Algorithms computational bottlenecks for PROMs: precomputation and hyperreduction. In: Benner, P., Grivet-Talocia, S., Quarteroni, A., Rozza, G., Schilders, W.H.A., Silveira, L.M. (eds.) Snapshot-Based Methods and Algorithms, pp 181–244. De Gruyter, Berlin (2020)

  55. Haasdonk, B., Ohlberger, M.: Efficient reduced models for parametrized dynamical systems by offline/online decomposition. Math. Comput. Model. Dyn. Syst. 17(2), 145–161 (2009). https://doi.org/10.1080/13873954.2010.514703

    Article  MATH  Google Scholar 

  56. Wirtz, D., Sorensen, D.C., Haasdonk, B.: A posteriori error estimation for DEIM reduced nonlinear dynamical systems. SIAM J. Sci. Comput. 36. https://doi.org/10.1137/120899042 (2012)

  57. Africa, P.C., Piersanti, R., Fedele, M., Dede, L., Quarteroni, A.: Lifex–heart module: a high-performance simulator for the cardiac function Package 1: Fiber generation. arXiv:2201.03303 (2022)

  58. Arndt, D., Bangerth, W., Blais, B., Fehling, M., Gassmöller, R., Heister, T., Heltai, L., Köcher, U., Kronbichler, M., Maier, M., Munch, P., Pelteret, J.P., Proell, S., Simon, K., Turcksin, B., Wells, D., Zhang, J.: The deal.II library, version 9.3. Journal of Numerical Mathematics (2021)

  59. Quarteroni, A., Veneziani, A., Zunino, P.: Mathematical and numerical modeling of solute dynamics in blood flow and arterial walls. SIAM J. Numer. Anal. 39, 1488–1511 (2002). https://doi.org/10.1137/S0036142900369714

    Article  MathSciNet  MATH  Google Scholar 

  60. Karner, G., Perktold, K., Zehentner, H.P.: Computational modeling of macromolecule transport in the arterial wall. Comput. Methods Biomech. Biomed. Engin. 4(6), 491–504 (2001). https://doi.org/10.1080/10255840108908022

    Article  Google Scholar 

Download references

Funding

Open access funding provided by Politecnico di Milano within the CRUI-CARE Agreement.

Author information

Authors and Affiliations

  1. MOX - Dipartimento di Matematica, Politecnico di Milano, P.zza Leonardo da Vinci 32, Milan, I-20133, Italy

    Elena Zappon, Andrea Manzoni & Alfio Quarteroni

  2. Institute of Mathematics, Ecole Polytechnique Federale de Lausanne, Station 8, Lausanne, CH-1015, Switzerland

    Alfio Quarteroni

Authors
  1. Elena Zappon
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Andrea Manzoni
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Alfio Quarteroni
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Elena Zappon.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by: Olga Mula

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix : A: A posteriori error estimator for unsteady reduced basis models

Appendix : A: A posteriori error estimator for unsteady reduced basis models

To find an a posteriori error estimate for the ROM approximation in a time-dependent case, according to [55], we can start by considering the following parametrized linear dynamical system for a vector \(\mathbf {u}(t;\boldsymbol {\mu }) \in \mathbb {R}^{n}\):

$$ \begin{cases}\frac{d}{dt} \mathbf{u}(t;\boldsymbol{\mu}) = \mathbb{A}_{N}(t;\boldsymbol{\mu})\mathbf{u}(t;\boldsymbol{\mu}) + \mathbf{f}_{N}(t;\boldsymbol{\mu}), & \quad t \in (0,T) \\ \mathbf{u}(0;\boldsymbol{\mu}) = \mathbf{u}_{0}(\boldsymbol{\mu}) & \end{cases} $$

Here the matrix \(\mathbb {A}_{N}(t;\boldsymbol {\mu }) \in \mathbb {R}^{N \times N}\) and the vector \(\mathbf {f}_{N}(t;\boldsymbol {\mu }) \in \mathbb {R}^{N}\), where N denotes the dimension of the reference FOM space, are μ-dependent. Moreover, we define the projection matrix \(\mathbb {V} \in \mathbb {R}^{N\times n}\) defined through RB methods, where n ≤ N is the ROM dimension. Then, the reduced dynamical system is:

$$ \begin{cases} \frac{d}{dt} \mathbf{u}_{n}(t;\boldsymbol{\mu}) = \mathbb{A}_{n}(t;\boldsymbol{\mu})\mathbf{u}_{n}(t;\boldsymbol{\mu}) + \mathbf{f}_{n}(t;\boldsymbol{\mu}), & t \in [0,T]\\ \mathbf{u}_{n}(0;\boldsymbol{\mu}) = \mathbf{u}_{n,0}(\boldsymbol{\mu}) \end{cases} $$
(A1)

where \(\mathbb {A}_{n}(t;\boldsymbol {\mu }) = \mathbb {V}^{T}\mathbb {A}_{N}(t;\boldsymbol {\mu })\mathbb {V}\), \(\mathbf {f}_{n}(t;\boldsymbol {\mu }) = \mathbb {V}^{T}\mathbf {f}_{N}(t;\boldsymbol {\mu }) \mathbb {V}\), un(t; μ) is the reduced approximation, i.e., \(\mathbf {u}_{N}(t;\boldsymbol {\mu }) \approx \mathbb {V}\mathbf {u}_{n}(t;\boldsymbol {\mu })\), and un,0(μ) is the projection of u0(μ) onto the reduced space.

Let us now denote the error and the residual as

$$ \begin{array}{l} \mathbf{e}(t;\boldsymbol{\mu}) := \mathbf{u}(t;\boldsymbol{\mu}) - \mathbb{V}\mathbf{u}_{n}(t;\boldsymbol{\mu}), \\ \mathbf{r}(t;\boldsymbol{\mu}) := \mathbb{A}_{N}(t;\boldsymbol{\mu})\mathbb{V}\mathbf{u}_{n}(t;\boldsymbol{\mu}) + \mathbf{f}_{N}(t;\boldsymbol{\mu}) - \mathbb{V} \frac{d}{dt}\mathbf{u}_{n}(t;\boldsymbol{\mu}), \end{array} $$

respectively; given a symmetric positive definite matrix \(\mathbf {G} \in \mathbb {R}^{N \times N}\), let us denote by 〈⋅,⋅〉G the induced inner product, and the induced norm as \(\| \mathbf {u}\|_{\mathbf {G}} := \sqrt {\langle \mathbf {u},\mathbf {u}\rangle _{\mathbf {G}}}\) on RN. Similarly, \(\| \mathbb {A}\|_{\mathbf {G}} := \textup {sup}_{\| \mathbf {u}\|_{\mathbf {G}}}\| \mathbb {A}\mathbf {u}\|_{\mathbf {G}}\), for \(\mathbb {A} \in \mathbb {R}^{N\times N}\). For example, if \(\mathbf {G} = \mathbb {I}_{N \times N}\), i.e., it is the identity matrix, than we obtain the simple 2-norm used in this work. Then, the following a posteriori error estimate can be stated:

Proposition 1 (A posteriori error estimate)

Assuming that \(\mathbb {A}_{N} (t;\boldsymbol {\mu }) = \mathbb {A}_{N}(\boldsymbol {\mu })\) is time-invariant and has eigenvalues with negative real part for all \(\boldsymbol {\mu } \in {\mathscr{P}}\), than the solution is bounded by

$$ \sup_{t} \| \exp(\mathbb{A}_{N}(\boldsymbol{\mu})t)\|_{\mathbf{G}} \leq C_{1}(\boldsymbol{\mu}),$$

where C1(μ) is a computable constant. Then, the following error estimates holds:

$$ \| \mathbf{u}(t;\boldsymbol{\mu}) - \mathbb{V}\mathbf{u}_{n}(t;\boldsymbol{\mu})\|_{\mathbf{G}} \leq C_{1}(\boldsymbol{\mu}) \left( \| \mathbf{e}(0;\boldsymbol{\mu})\|_{\mathbf{G}} + {{\int}_{0}^{T}} \| \mathbf{r}(\tau;\boldsymbol{\mu})\|_{\mathbf{G}} d \tau \right). $$
(A2)

Proof

From the residual definition, we obtain that

$$\mathbb{V}\frac{d}{dt}\mathbf{u}_{n}(t;\boldsymbol{\mu}) = \mathbb{A}_{N}(\boldsymbol{\mu})\mathbb{V}\mathbf{u}_{n}(t;\boldsymbol{\mu})+\mathbf{f}_{N}(t;\boldsymbol{\mu}) - \mathbf{r}(t;\boldsymbol{\mu}).$$

Subtracting this equation from the original system, we get the evolution system

$$ \begin{cases}\frac{d}{dt}\mathbf{e}(t;\boldsymbol{\mu}) = \mathbb{A}_{N}(\boldsymbol{\mu})\mathbf{e}(t;\boldsymbol{\mu}) + \mathbf{r}(t;\boldsymbol{\mu})\\ \mathbf{e}(0;\boldsymbol{\mu}) = \mathbf{u}_{0}(\boldsymbol{\mu}) - \mathbb{V} \mathbf{u}_{n,0}(\boldsymbol{\mu}). \end{cases} $$
(A3)

for the error, that admits the explicit solution

$$\mathbf{e}(t;\boldsymbol{\mu}) = \exp(\mathbb{A}_{N}(\boldsymbol{\mu})t)\mathbf{e}(0;\boldsymbol{\mu}) + {{\int}_{0}^{T}} \exp(\mathbb{A}_{N}(\boldsymbol{\mu})(T-\tau))\mathbf{r}(\tau;\boldsymbol{\mu})d\tau.$$

The thesis follows thanks to the assumption \(\| \exp (\mathbb {A}_{N}(\boldsymbol {\mu })s)\|_{\mathbf {G}} \leq C_{1}(\boldsymbol {\mu })\) for \(s \in \mathbb {R}^{+}\). â–¡

Error relations similar to (A2) can also be found for time dependent systems, meaning when \(\mathbb {A}_{N}(t;\boldsymbol {\mu })\) depends on time, by a suitable modification of C1(μ). To do this, we first point out that the error evolution system (A3) holds also for time-variants systems. Then, integrating, we get

$$ \mathbf{e}(t;\boldsymbol{\mu}) = \mathbf{e}(0;\boldsymbol{\mu}) + {{\int}_{0}^{T}} \mathbb{A}_{N}(\tau;\boldsymbol{\mu})\mathbf{e}(\tau;\boldsymbol{\mu}) + \mathbf{r}(\tau;\boldsymbol{\mu})d\tau.$$

Denoting by Φ(t) := ∥e(t; μ)∥G, \(\boldsymbol {\alpha }(t):= \| \mathbf {e}(0;\boldsymbol {\mu })\|_{\mathbf {G}} + {{\int \limits }_{0}^{T}} \| \mathbf {r}(\tau ;\boldsymbol {\mu })\|_{\mathbf {G}}d\tau \) and \(\boldsymbol {\beta }(t) := \| \mathbb {A}_{N}(\tau ;\boldsymbol {\mu })\|_{\mathbf {G}}\), we can obtain

$$\boldsymbol{\Phi}(t) \leq \boldsymbol{\alpha}(t) + {{\int}_{0}^{T}} \boldsymbol{\beta}(\tau)\boldsymbol{\Phi}(\tau)d\tau.$$

Moreover, assuming an upper bound \(\| \mathbb {A}_{N}(t;\boldsymbol {\mu })\|_{\mathbf {G}} \leq C_{3}(\boldsymbol {\mu })\) for t ∈ [0,T], \(\boldsymbol {\mu } \in {\mathscr{P}}\), using the Gronwall inequality, we can write

$$ \begin{array}{ll} \boldsymbol{\Phi}(t) &\leq \boldsymbol{\alpha}(t) + {{\int}_{0}^{T}} \boldsymbol{\alpha}(\tau)\boldsymbol{\beta}(\tau)\exp \left( {{\int}_{s}^{T}} \boldsymbol{\beta}(r)dr \right)d\tau \leq \boldsymbol{\alpha}(t)(1 + C_{3}(\boldsymbol{\mu})t \exp(C_{3} t)). \end{array} $$

Then, equation (A2) can be found denoting by \(C_{1} := 1 + C_{3}(\boldsymbol {\mu })T \exp (C_{3} T)\).

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zappon, E., Manzoni, A. & Quarteroni, A. Efficient and certified solution of parametrized one-way coupled problems through DEIM-based data projection across non-conforming interfaces. Adv Comput Math 49, 21 (2023). https://doi.org/10.1007/s10444-022-10008-w

Download citation

  • Received: 26 April 2022

  • Accepted: 15 December 2022

  • Published: 16 March 2023

  • DOI: https://doi.org/10.1007/s10444-022-10008-w

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Coupled problems
  • Reduced order models
  • Proper orthogonal decomposition
  • Discrete empirical interpolation
  • Interface non-conformity
  • A posteriori error estimates

Mathematics Subject Classification (2010)

  • 65M60
  • 65N99
  • 68U99
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • Your US state privacy rights
  • How we use cookies
  • Your privacy choices/Manage cookies
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.