Skip to main content
Log in

An adaptive finite volume method for the diffraction grating problem with the truncated DtN boundary condition

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we develop a adaptive finite volume method with the truncation of the nonlocal boundary operators for the wave scattering by periodic structures. The related truncation parameters are chosen through sharp a posteriori error estimate of the finite volume method. The crucial part of the a posteriori error analysis is to develop a duality argument technique and use a L2-orthogonality property of the residual which plays a similar role as the Galerkin orthogonality. The a posteriori error estimate consists of two parts, the finite volume discretization error for adapting meshes and the truncation error of boundary operators which decays exponentially with respect to the truncation parameter N. Numerical experiments are presented to confirm our theoretical analysis and show the efficiency and robustness of the proposed adaptive method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abboud, T.: Electromagnetic waves in periodic media, Proceedings of the Second International Conference on Mathematical and Numerical Aspects of Wave Propagation, Newark, DE (1993)

  2. Ammari, H., Nédélec, J.-C.: Low-frequency electromagnetic scattering. SIAM J. Math. Anal. 31, 836–861 (2000)

    Article  MathSciNet  Google Scholar 

  3. Babuska, I., Aziz, A.: Survey lectures on mathematical foundations of the finite element method. In: Aziz, A. (ed.) The Mathematical Foundations of the Finite Element Method with Application to the Partial Differential Equations. Academic Press, New York (1973)

  4. Babuska, I., Rheinboldt, W.C.: Error estimates for adaptive finite element computations. SIAM J. Numer. Anal. 15, 736–754 (1978)

    Article  MathSciNet  Google Scholar 

  5. Bao, G.: Finite element approximation of time harmonic waves in periodic structures. SIAM J. Numer. Anal. 32, 1155–1169 (1995)

    Article  MathSciNet  Google Scholar 

  6. Bao, G.: Numerical analysis of diffraction by periodic structures: Tm polarization. Numer. Math. 75, 1–16 (1996)

    Article  MathSciNet  Google Scholar 

  7. Bao, G., Cao, Y., Yang, H.: Numerical solution of diffraction problems by a least-square finite element method. Math. Methods Appl. Sci. 23, 1073–1092 (2000)

    Article  MathSciNet  Google Scholar 

  8. Bao, G., Chen, Z., Wu, H.: Adaptive finite element method for diffraction gratings. J. Opt. Soc. Amer. A 22, 1106–1114 (2005)

    Article  MathSciNet  Google Scholar 

  9. Bao, G., Cowsar, L., Masters, W.: Mathematical Modeling in Optical Science. Frontiers in Appl. Math., SIAM, Philadelphia (2001)

    Book  Google Scholar 

  10. Bao, G., Dobson, D.C., Cox, J.A.: Mathematical studies in rigorous grating theory. J. Opt. Soc. Amer. A 12, 1029–1042 (1995)

    Article  MathSciNet  Google Scholar 

  11. Bao, G., Li, P., Wu, H.: An adaptive edge element method with perfectly matched absorbing layers for wave scattering by periodic structures. Math. Comp. 79, 1–34 (2010)

    Article  MathSciNet  Google Scholar 

  12. Berenger, J. -P.: A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114, 185–200 (1994)

    Article  MathSciNet  Google Scholar 

  13. Bi, C., Ginting, V.: A residual-type a posteriori error estimate of finite volume element method for a quasi-linear elliptic problem. Numer Math. 114, 107–132 (2009)

    Article  MathSciNet  Google Scholar 

  14. Bramble, J., Pasciak, J.: Analysis of a finite elment pml approximation for the three dimensional time-harmonic maxwell problem. Math. Comp. 77, 1–10 (2008)

    Article  MathSciNet  Google Scholar 

  15. Bruno, O., Reitich, F.: Numerical solution of diffraction problems: a method of variation of boundaries. J. Opt. Soc. Amer. A 10, 1168–1175 (1993)

    Article  Google Scholar 

  16. Carstensen, C., Lazarov, R., Tomov, S.: Explicit and averaging a posteriori error estimates for adaptive finite volume methods. SIAM J. Numer. Anal. 42, 2496–2521 (2005)

    Article  MathSciNet  Google Scholar 

  17. Chen, Z., Chen, J.: An adaptive perfectly matched layer technique for 3-d time-harmonic electromagnetic scattering problems. Math. Comp. 77, 673–698 (2008)

    Article  MathSciNet  Google Scholar 

  18. Chen, Z., Liu, X.: An adaptive perfectly matched layer technique for time-harmonic scattering problems. SIAM J. Numer. Anal. 43, 645–671 (2005)

    Article  MathSciNet  Google Scholar 

  19. Chen, Z., Wu, H.: An adaptive finite element method with perfectly matched absorbing layers for the wave scattering by periodic structures. SIAM J. Numer. Anal. 41, 799–826 (2003)

    Article  MathSciNet  Google Scholar 

  20. Colton, D., Kress, R.: Integral Equation Methods in Scattering Theory. John Wiley & Sons (1983)

  21. Colton, D.: Inverse Acoustic and Electromagnetic Scattering Theory, 2nd edn. Springer, Berlin, New York (1998)

    Book  Google Scholar 

  22. Dobson, D.C.: Optimal design of periodic antireflective structures for the helmholtz equation. European J. Appl. Math. 4, 321–340 (1993)

    Article  MathSciNet  Google Scholar 

  23. Dorfler, W.: A convergent adaptive algorithm for poisson’s equation. SIAM J. Numer. Anal. 33, 1106–1124 (1996)

    Article  MathSciNet  Google Scholar 

  24. Erath, C.: A posteriori error estimates and adaptive mesh refinement for the coupling of the finite volume method and the boundary element method. SIAM J. Numer Anal. 51, 1777–1804 (2013)

    Article  MathSciNet  Google Scholar 

  25. Grote, M., Kirsch, C.: Dirichlet-to-neumann boundary conditions for multiple scattering problems. J. Comput. Phys. 201, 630–650 (2004)

    Article  MathSciNet  Google Scholar 

  26. He, Y., Nicholls, D.P., Shen, J.: An efficient and stable spectral method for electromagnetic scattering from a layered periodic struture. J. Comput. Phys. 231, 3007–3022 (2012)

    Article  MathSciNet  Google Scholar 

  27. Hsiao, G.C., Nigam, N., Pasciak, J.E., Xu, L.: Error analysis of the dtn-fem for the scattering problem in acoustics via fourier analysis. J. Comput. Appl. Math. 235, 4949–4965 (2011)

    Article  MathSciNet  Google Scholar 

  28. Jiang, X., Li, P., Lv, J., Zheng, W.: An adaptive finite element method for the wave scattering with transparent boundary condition. J. Sci. Comput. 72, 936–956 (2017)

    Article  MathSciNet  Google Scholar 

  29. Jin, J.: The Finite Element Method in Electromagnetics. Wiley, New York (1993)

    MATH  Google Scholar 

  30. Lazarov, R.D., Tomov, S.Z.: Adaptive finite volume element method for convection-diffusion-reaction problems in 3-D, Scientific computing and applications (Kananaskis, AB, 2000), Adv. Comput. Theory Pract., 7, Nova Sci. Publ., Huntington, NY (2001)

  31. Monk, P.: Finite Element Methods for Maxwell’s Equations. Oxford University Press, Oxford, UK (2003)

    Book  Google Scholar 

  32. Nédélec, J.-C.: Acoustic and Electromagnetic Equations Integral Representations for Harmonic Problems. Springer, New York (2001)

    Book  Google Scholar 

  33. Petit, R.: Electromagnetic Theory of Gratings Topics in Current Physics 22, R. Petit, ed. Springer, Berlin (1980)

    Book  Google Scholar 

  34. Schatz, A.H.: An observation concerning ritz-galerkin methods with indefinite bilinear forms. Math. Comp. 28, 959–962 (1974)

    Article  MathSciNet  Google Scholar 

  35. Scott, L.R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp. 54, 483–493 (1990)

    Article  MathSciNet  Google Scholar 

  36. Teixeira, F.L., Chew, W.C., et al.: Advances in the theory of perfectly matched layers. In: Chew, W.C. (ed.) Fast and Efficient Algorithms in Computational Electromagnetics. Artech House, Boston (2001)

  37. Turkel, E., Yefet, A.: Absorbing pml boundary layers for wave-like equations. Appl. Numer. Math. 27, 533–557 (1998)

    Article  MathSciNet  Google Scholar 

  38. Wang, Z., Bao, G., Li, J., Li, P., Wu, H.: An adaptive finite element method for the diffraction grating problem with transparent boundary condition. SIAM J. Numer. Anal. 53, 1585–1607 (2015)

    Article  MathSciNet  Google Scholar 

  39. Wu, H., Li, Y., Li, R.: Adaptive generalized difference/finite volume computations for two dimensional nonlinear parabolic equations. Chinese J. Comput. Phys. 20, 64–72 (2003)

    Google Scholar 

  40. Wu, Y., Lu, Y.Y.: Analyzing diffraction gratings by a boundary integral equation neumann-to-dirichlet map method. J. Opt. Soc. Am. A 26, 2444–2451 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Funding

The research was supported in part by the NSF of China under grant 12171141, Natural Science Foundation of Henan province grant 202300410156 and Science and Technology Attack Plan Project of Henan province grant 222102210049.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhoufeng Wang.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Communicated by: Jon Wilkening

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z. An adaptive finite volume method for the diffraction grating problem with the truncated DtN boundary condition. Adv Comput Math 48, 48 (2022). https://doi.org/10.1007/s10444-022-09969-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-022-09969-9

Keywords

Mathematics Subject Classification (2010)

Navigation