Skip to main content
Log in

Second-Order Accurate Finite-Difference Scheme for Solving the Problem of Elastic Wave Diffraction by the Anisotropic Gradient Layer

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

The boundary value problem for the Lame equations for the problem of elastic wave diffraction by an anisotropic layer with continuously varying elastic parameters is considered. The original problem is reduced to the boundary value problem for a system of ordinary differential equations of the given form. The finite-difference scheme is obtained by the method of approximation of integral identities. The theorem is proved that the error of approximation of the solution has a second order of accuracy for sufficiently continuous values of the elements of the elasticity tensor. Numerical results confirming theoretical conclusions are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Babuska and M. Cara, Seismic Anisotropy in the Earth (Springer, New York, 1991).

    Book  Google Scholar 

  2. C. M. Sayers and M. Kachanov, “Microcrack-induced elastic wave anisotropy of brittle rocks,” J. Geophys. Res. 100 (B3), 4149–4156 (1995).

    Article  Google Scholar 

  3. R. T. Bachman, “Elastic anisotropy in marine sedimentary rocks,” J. Geophys. Res.: Solid Earth 88 (B1), 539–545 (1983).

    Article  Google Scholar 

  4. M. Schoenberg and C. M. Sayers, “Seismic anisotropy of fractured rock,” Geophys. 60, 204–211 (1995).

    Article  Google Scholar 

  5. I. Tsvankin, J. Gaiser, V. Grechka, M. Baan, and L. Thomsen, “Seismic anisotropy in exploration and reservoir characterization: an overview,” Geophysics 75, 75A15–75A29 (2010).

    Article  Google Scholar 

  6. P. G. Silver, “Seismic anisotropy beneath the continents: probing the depths of geology,” Ann. Rev. Earth Planet. Sci. 24, 385–432 (1996).

    Article  Google Scholar 

  7. S. Karato, H. Jung, I. Katayama, and P. Skemer, “Geodynamic significance of seismic anisotropy of the upper mantle: new insights from laboratory studies,” Ann. Rev. Earth Planet. Sci. 36, 59–95 (2008).

    Article  Google Scholar 

  8. M. K. Savage, “Seismic anisotropy and mantle deformation: what have we learned from shear wave,” Rev. Geophys. 37, 65–106 (1999).

    Article  Google Scholar 

  9. J. Li, Z. Liang, J. Zhu, and X. Zhangh, “Anisotropic metamaterials for transformation acoustics and imaging,” Springer Ser. Mater. Sci. 166, 169–196 (2013).

    Article  Google Scholar 

  10. R. Zhu, X. N. Liu, G. L. Huang, H. H. Huang, and C. T. Sun, “Microstructural design and experimental validation of elastic metamaterial plates with anisotropic mass density,” Phys. Rev. B 86, 144307 (2012).

    Article  Google Scholar 

  11. A. P. Liu, R. Zhu, X. N. Liu, G. K. Hu, and G. L. Huang, “Multi-displacement microstructure continuum modeling of anisotropic elastic metamaterials,” Wave Motion 49, 411–426 (2012).

    Article  MATH  Google Scholar 

  12. D. Torrent and J. Sanchez-Dehesa, “Acoustic cloaking in two dimensions: a feasible approach,” New J. Phys. 10, 063015 (2008).

    Article  Google Scholar 

  13. P. Vannucci, Anisotropic Elasticity (Springer, Singapore, 2018).

    Book  MATH  Google Scholar 

  14. A. V. Anufrieva and D. N. Tumakov, “Diffraction of a plane elastic wave by a gradient transversely isotropic layer,” Adv. Acoust. Vibrat. 2013, 1–8 (2013).

    Article  Google Scholar 

  15. A. V. Anufrieva and D. N. Tumakov, “On some of the peculiarities of propagation of an elastic wave through a gradient transversely isotropic layer,” in Proceedings of the DD’14, 2014, pp. 23–28.

    Google Scholar 

  16. A. C. Ugural and S. K. Fenster, Advanced Strength and Applied Elasticity, 5th ed. (Prentice Hall, Upper Saddle River, NJ, 2012)

    MATH  Google Scholar 

  17. P. Moczo, J. Kristek, and M. Galis, The Finite-DifferenceModelling of Earthquake Motions: Waves and Ruptures (Cambridge Univ. Press, Cambridge, 2014).

    Book  MATH  Google Scholar 

  18. V. A. Biryukov, V. A. Miryakha, I. B. Petrov, and N. I. Khokhlov, “Simulation of elastic wave propagation in geological media: intercomparison of three numericalmethods,” Comput. Math. Math. Phys. 56, 1086–1095 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  19. P. Moczo, J. Kristek, M. Galis, and P. Pazak, “On accuracy of the finite-difference and finite element schemes with respect to P-wave to S-wave speed ratio,” Geophys. J. Int. 182, 493–510 (2010).

    Google Scholar 

  20. K. R. Kelly, R. W. Ward, S. Treitel, and R. M. Alford, “Synthetic seismograms: a finite-difference approach,” Geophys. 41, 2–27 (2012).

    Article  Google Scholar 

  21. L. Etemadsaeed, P. Moczo, J. Kristek, A. Ansari, and M. Kristekova, “A no-cost improved velocitystress staggered-grid finite-difference scheme formodelling seismic wave propagation,” Geophys. J. Int. 207, 481–511 (2016).

    Article  Google Scholar 

  22. Y. Wang and W. Liang, “Optimized finite difference methods for seismic acoustic wave modeling,” in Computational and Experimental Studies of Acoustic Waves (InTech, Rijeka, Croatia, 2018).

    Google Scholar 

  23. E. H. Saenger, N. Gold, and S. A. Shapiro, “Modeling the propagation of elastic waves using a modified finite-difference grid,” Wave Motion 31, 77–92 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  24. A. V. Favorskaya and I. B. Petrov, Innovations inWave ProcessesModelling and DecisionMaking. Grid-Characteristic Method and Applications (Springer, Switzerland, 2018).

    Google Scholar 

  25. G. Bao, G. Hu, J. Sun, and T. Yin, “Direct and inverse elastic scattering from anisotropic media,” J. Math. Pures Appl. (2018, in Press).

    Google Scholar 

  26. A. Boström, “Scattering of in-plane elastic waves by an anisotropic circle,” Quart. J. Mech. Appl. Math., 1–17 (2018).

  27. A. A. Samarskii, The Theory of Difference Schemes (Marcel Dekker, New York, 2001).

    Book  MATH  Google Scholar 

  28. A. V. Anufrieva, K. B. Igudesman, and D. N. Tumakov, “Peculiarities of elastic wave refraction from the layer with fractal distribution of density,” Appl. Math. Sci. 8 (118), 5875–5886 (2014).

    Google Scholar 

  29. M. F. Pavlova and E. V. Rung, “A convergence of an implicit difference scheme for the saturated-unsaturated filtration consolidation problem,” Lobachevskii J. Math. 34, 392–405 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  30. A. V. Anufrieva, E. V. Rung, and D. N. Tumakov, “Application of a second order accurate finite-difference method to problems of diffraction of elastic waves by gradient layers,” IOP Conf. Ser.: Mater. Sci. Eng. 158, 012008 (2016).

    Article  Google Scholar 

  31. A. Anufrieva, D. Chikrin, and D. Tumakov, “On peculiarities of propagation of a plane elastic wave through a gradient anisotropic layer,” Adv. Acoust. Vibrat., 515263 (2015).

  32. A. Anufrieva, E. Rung, and D. Tumakov, “Approximation error of one finite-difference scheme for the problem of diffraction by a gradient layer,” Far East J. Math. Sci. 101, 1253–1264 (2017).

    MATH  Google Scholar 

  33. A. V. Anufrieva, E. V. Rung, and D. N. Tumakov, “On existence and uniqueness of a generalized solution to the Cauchy problem for the Lame system,” J. Fundam. Appl. Sci. 9 (1S), 1548–1558 (2017).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Anufrieva.

Additional information

(Submitted by E. K. Lipachev)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anufrieva, A.A., Rung, E.V. & Tumakov, D.N. Second-Order Accurate Finite-Difference Scheme for Solving the Problem of Elastic Wave Diffraction by the Anisotropic Gradient Layer. Lobachevskii J Math 39, 1053–1065 (2018). https://doi.org/10.1134/S1995080218080036

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080218080036

Keywords and phrases

Navigation