Skip to main content
Log in

A new linearized fourth-order conservative compact difference scheme for the SRLW equations

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, a novel three-point fourth-order compact operator is considered to construct new linearized conservative compact finite difference scheme for the symmetric regularized long wave (SRLW) equations based on the reduction order method with three-level linearized technique. The discrete conservative laws, boundedness and unique solvability are studied. The convergence order \(\mathcal {O}(\tau ^{2}+h^{4})\) in the \(L^{\infty }\)-norm and stability of the present compact scheme are proved by the discrete energy method. Numerical examples are given to support the theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bai, Y., Zhang, L.: A conservative finite difference scheme for generalized symmetric regularized long wave equations. Acta Math. Appl. Sin. 35 (03), 458–470 (2012)

    MathSciNet  MATH  Google Scholar 

  2. Clarkson, P. A.: New similarity reductions and painlevé analysis for the symmetric regularised long wave and modified Benjamin-Bona-Mahoney equations. J. Phys. A Math. General. 22(18), 3821–3848 (1989). http://iopscience.iop.org/0305-4470/22/18/020

    Article  Google Scholar 

  3. Fang, S., Guo, B., Qiu, H.: The existence of global attractors for a system of multi-dimensional symmetric regularized wave equations. Commun. Nonlinear Sci. Numer. Simul. 14(01), 61–68 (2009). https://doi.org/10.1016/j.cnsns.2007.07.001

    Article  MathSciNet  MATH  Google Scholar 

  4. Guo, B.: A class of difference schemes of two-dimensional viscous fluid flow. Acta Math. Sin. 17(04), 242–258 (1965)

    Google Scholar 

  5. Guo, B.: The spectral method for symmetric regularized wave equations. J. Comput. Math. 5(04), 297–306 (1987). https://www.jstor.org/stable/43692342

    MathSciNet  MATH  Google Scholar 

  6. He, Y., Wang, X., Cheng, H., Deng, Y.: Numerical analysis of a high-order accurate compact finite difference scheme for the SRLW equation. Appl. Math. Comput. 418, 126837 (2022). https://doi.org/10.1016/j.amc.2021.126837

    Article  MathSciNet  MATH  Google Scholar 

  7. Hu, J., Zheng, K., Zheng, M.: Numerical simulation and convergence analysis of a high-order conservative difference scheme for SRLW equation. Appl. Math. Model. 38(23), 5573–5581 (2014). https://doi.org/10.1016/j.apm.2014.04.062

    Article  MathSciNet  MATH  Google Scholar 

  8. Ji, B., Zhang, L., Sun, Q.: A dissipative finite difference Fourier pseudo-spectral method for the symmetric regularized long wave equation with damping mechanism. Appl. Numer. Math. 154, 90–103 (2020). https://doi.org/10.1016/j.apnum.2020.03.022

    Article  MathSciNet  MATH  Google Scholar 

  9. Kerdboon, J., Yimnet, S., Wongsaijai, B., Mouktonglang, T., Poochinapan, K.: Convergence analysis of the higher-order global mass-preserving numerical method for the symmetric regularized long-wave equation. Int. J. Comput. Math. 98(05), 869–902 (2021). https://doi.org/10.1080/00207160.2020.1792451

    Article  MathSciNet  MATH  Google Scholar 

  10. Kong, L., Zeng, W., Liu, R., Kong, L.: A multisymplectic Fourier pseudo-spectral scheme for the SRLW equation and conservation laws. Chinese J. Comput. Phys. 23(01), 25–31 (2006)

    Google Scholar 

  11. Li, S.: Numerical study of a conservative weighted compact difference scheme for the symmetric regularized long wave equations. Numer. Methods Partial Differ. Equ. 35(01), 60–83 (2018). https://doi.org/10.1002/num.22285

    Article  MathSciNet  MATH  Google Scholar 

  12. Li, S., Wu, X.: \(L^{\infty }\) error bound of conservative compact difference scheme for the generalized symmetric regularized long-wave (GSRLW) equations. Comput. Appl. Math. 37 (02), 1–21 (2017). https://doi.org/10.1007/s40314-017-0481-6

    Article  MathSciNet  Google Scholar 

  13. Mittal, R. C., Tripathi, A.: Numerical solutions of symmetric regularized long wave equations using collocation of cubic B-splines finite element. Int. J. Comput. Methods Eng. Sci. Mech. 16(02), 142–150 (2015). https://doi.org/10.1080/15502287.2015.1011812

    Article  MathSciNet  Google Scholar 

  14. Nie, T.: A decoupled and conservative difference scheme with fourth-order accuracy for the symmetric regularized long wave equations. Appl. Math. Comput. 219(17), 9461–9468 (2013). https://doi.org/10.1016/j.amc.2013.03.076

    Article  MathSciNet  MATH  Google Scholar 

  15. Peregrine, D.: Calculations of the development of an undular bore. J. Fluid Mech. 25(02), 321–330 (1966). https://doi.org/10.1017/S0022112066001678

    Article  Google Scholar 

  16. Ren, Z.: Chebyshev pseudo-spectral method for SRLW equations. Chinese J. Eng. Math. 12, 34–40 (1995)

    Google Scholar 

  17. Seyler, C. E., Fenstermacher, D. L.: A symmetric regularized-long-wave equation. Phys. Fluids 27(01), 4–7 (1984). https://doi.org/10.1063/1.864487

    Article  MATH  Google Scholar 

  18. Sun, Z.: Numerical methods of partial differential equations, 2nd edn. Science Press, Beijing (2012)

    Google Scholar 

  19. Wang, T., Zhang, L.: Pseudo-compact conservative finite difference approximate solution for the symmetric regularized-long-wave equation. Chinese J. Eng. Math. 26(07), 1039–1046 (2006)

    MathSciNet  MATH  Google Scholar 

  20. Wang, T., Zhang, L., Chen, F.: Conservative schemes for the symmetric regularized long wave equations. Appl. Math. Comput. 190(02), 1063–1080 (2007). https://doi.org/10.1016/j.amc.2007.01.105

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang, X., Zhang, Q., Sun, Z.: The pointwise error estimates of two energy-preserving fourth-order compact schemes for viscous Burgers’ equation. Adv. Comput. Math. 47(02), 1–42 (2021). https://doi.org/10.1007/s10444-021-09848-9

    Article  MathSciNet  MATH  Google Scholar 

  22. Xu, F.: Application of Exp-function method to symmetric regularized long wave (SRLW) equation. Phys. Lett. A 372(03), 252–257 (2008). https://doi.org/10.1016/j.physleta.2007.07.035

    Article  MathSciNet  MATH  Google Scholar 

  23. Yimnet, S., Wongsaijai, B., Rojsiraphisal, T., Poochinapan, K.: Numerical implementation for solving the symmetric regularized long wave equation. Appl. Math. Comput. 273, 809–825 (2016). https://doi.org/10.1016/j.amc.2015.09.069

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhang, Q., Liu, L.: Convergence and stability in maximum norms of linearized fourth-order conservative compact scheme for Benjamin-Bona-Mahony-Burgers’ equation. J. Sci. Comput. 87(2), 1–31 (2021). https://doi.org/10.1007/s10915-021-01474-3

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhang, Q., Sun, C., Fang, Z., Sun, H.: Pointwise error estimate and stability analysis of fourth-order compact difference scheme for time-fractional Burgers’ equation. Appl. Math. Comput. 418, 126824 (2022). https://doi.org/10.1016/j.amc.2021.126824

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhao, M., Liu, Y., Li, H.: Fully discrete two-step mixed element method for the symmetric regularized long wave equation. Int. J. Model. Simul. Sci. Comput. 5(3), 1450007 (2014). https://doi.org/10.1142/S179396231450007X

    Article  Google Scholar 

  27. Zheng, J., Zhang, R., Guo, B.: The Fourier pseudo-spectral method for the SRLW equation. Appl. Math. Mech. 10(09), 843–852 (1989). https://doi.org/10.1007/BF02013752

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Weizhong Dai (Louisiana Tech University), Prof. Hongtao Chen (Xiamen University) and the referees for their valuable discussions and suggestions which improve the quality of the manuscript.

Funding

This work is supported by the Natural Science Foundation of Fujian Province, China (No. 2020J01796). The first author was supported by the Institute of Meteorological Big Data-Digital Fujian and Fujian Key Laboratory of Data Science and Statistics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofeng Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by: Enrique Zuazua

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Wang, X. & Zhong, R. A new linearized fourth-order conservative compact difference scheme for the SRLW equations. Adv Comput Math 48, 27 (2022). https://doi.org/10.1007/s10444-022-09951-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-022-09951-5

Keywords

Mathematics Subject Classification (2010)

Navigation