Skip to main content
Log in

Convergence rates for boundedly regular systems

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this work, we consider a continuous dynamical system associated with the fixed point set of a nonexpansive operator which was originally studied by Boţ and Csetnek (J. Dyn. Diff. Equat. 29(1), pp. 155–168, 2017). Our main results establish convergence rates for the system’s trajectories when the nonexpansive operator satisfies an additional regularity property. This setting is the natural continuous-time analogue to discrete-time results obtained in Bauschke, Noll and Phan (J. Math. Anal. Appl. 421(1), pp. 1–20, 2015) and Borwein, Li and Tam (SIAM J. Optim. 27(1), pp. 1–33, 2017) by using the same regularity properties. Closure properties of the class of Hölder regular operators under taking convex combinations and compositions are also derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbas, B., Attouch, H., Svaiter, B.F.: Newton-like dynamics and forward-backward methods for structured monotone inclusions in Hilbert spaces. J. Optim. Theory Appl. 161(2), 331–360 (2014)

    Article  MathSciNet  Google Scholar 

  2. Attouch, H., Alvarez, F.: The heavy ball with friction dynamical system for convex constrained minimization problems. In: Optimization (Namur, 1998), Lecture Notes in Economics and Mathematical Systems 481, pp 25–35. Springer, Berlin (2000)

  3. Attouch, H., Cabot, A.: Convergence of a relaxed inertial forward-backward algorithm for structured monotone inclusions. Appl. Math. Optim. 80 (3), 547–598 (2019)

    Article  MathSciNet  Google Scholar 

  4. Attouch, H., Svaiter, B.F.: A continuous dynamical Newton-like approach to solving monotone inclusions. SIAM J. Control. Optim. 49(2), 574–598 (2011)

    Article  MathSciNet  Google Scholar 

  5. Baillon, J.-B., Bruck, R.E., Reich, S.: On the asymptotic behavior of nonexpansive mappings and semigroups. Houst. J. Math. 4, 1–9 (1978)

    MATH  Google Scholar 

  6. Banert, S., Boţ, R.I.: A forward-backward-forward differential equation and its asymptotic properties. J. Convex Anal. 25(2), 371–388 (2018)

    MathSciNet  MATH  Google Scholar 

  7. Bauschke, H.H., Borwein, J.M.: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38(3), 367–426 (1996)

    Article  MathSciNet  Google Scholar 

  8. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces vol. 408 of CMS Books in Mathematics, 2nd edn. Springer, New York (2017)

    Book  Google Scholar 

  9. Bauschke, H.H., Noll, D., Phan, H.M.: Linear and strong convergence of algorithms involving averaged nonexpansive operators. J. Math. Anal. Appl. 421(1), 1–20 (2015)

    Article  MathSciNet  Google Scholar 

  10. Bochnak, J., Coste, M., Roy, M.-F.: Real Algebraic Geometry. Springer-Verlag, New York (1998)

    Book  Google Scholar 

  11. Borwein, J.M., Li, G., Tam, M.K.: Convergence rate analysis for averaged fixed point iterations in common fixed point problems. SIAM J. Optim. 27(1), 1–33 (2017)

    Article  MathSciNet  Google Scholar 

  12. Boţ, R. I., Csetnek, E.R.: A dynamical system associated with the fixed points set of a nonexpansive operator. J. Dyn. Diff. Equat. 29(1), 155–168 (2015)

    Article  MathSciNet  Google Scholar 

  13. Boţ, R. I., Csetnek, E.R.: Second order forward-backward dynamical systems for monotone inclusion problems. SIAM J. Control. Optim. 54(3), 1423–1443 (2016)

    Article  MathSciNet  Google Scholar 

  14. Polyak, B.T.: Introduction to Optimization (Translated from the Russian), Translations Series in Mathematics and Engineering, Optimization Software, Inc. Publications Division, New York (1987)

    Google Scholar 

  15. Bravo, M., Cominetti, R., Pavez-Signé, M.: Rates of convergence for inexact Krasnosel’skii–Mann iterations in Banach spaces. Math. Program. 175, 241–262 (2019)

    Article  MathSciNet  Google Scholar 

  16. Cegielski, A.: Iterative Methods for Fixed Point Problems in Hilbert Spaces. Springer-Verlag, Berlin Heidelberg (2012)

    MATH  Google Scholar 

  17. Cegielski, A., Reich, S., Zalas, R.: Regular sequences of quasi-nonexpansive operators and their applications. SIAM J. Optim. 28(2), 1508–1532 (2018)

    Article  MathSciNet  Google Scholar 

  18. Cegielski, A., Zalas, R.: Properties of a class of approximately shrinking operators and their applications. Fixed Point Theory 15, 399–426 (2014)

    MathSciNet  MATH  Google Scholar 

  19. Csetnek, E.R., Malitsky, Y., Tam, M.K.: Shadow Douglas–Rachford splitting for monotone inclusions. Appl. Math. Optim. 80(3), 665–678 (2019)

    Article  MathSciNet  Google Scholar 

  20. Drusvyatskiy, D., Lewis, A.S.: Semi-algebraic functions have small subdifferentials. Math. Program. 140(1), 5–29 (2013)

    Article  MathSciNet  Google Scholar 

  21. Ioffe, A.D.: An invitation to tame optimization. SIAM J. Optim. 19(4), 1894–1917 (2009)

    Article  MathSciNet  Google Scholar 

  22. Luke, D.R., Nguyen, H.T., Tam, M.K.: Implicit error bounds for Picard iterations on Hilbert spaces. Vietnam J. Math. 46(2), 243–258 (2018)

    Article  MathSciNet  Google Scholar 

  23. Nesterov, Y.: A method for unconstrained convex minimization problem with the rate of convergence O(1/k2). Doklady AN SSSR (translated as Soviet Math. Docl.) 269, 543–547 (1983)

    Google Scholar 

  24. Nesterov, Y.: Introductory Lectures on Convex Optimization: A Basic Course. Kluwer Academic Publishers, Dordrecht (2004)

    Book  Google Scholar 

  25. Peypouquet, J., Sorin, S.: Evolution equations for maximal monotone operators: asymptotic analysis in continuous and discrete time. J. Convex Anal. 17, 1113–1163 (2010)

    MathSciNet  MATH  Google Scholar 

  26. Rieger, J., Tam, M.K.: Backward-forward-reflected-backward splitting for three operator monotone inclusions. Appl. Math. Comput. 381, 125248 (2020)

    MathSciNet  MATH  Google Scholar 

  27. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer Science & Business Media, New York (2009)

  28. Robinson, S.M.: Some continuity properties of polyhedral multifunctions. Math. Program. Study 14, 206–214 (1981)

    Article  MathSciNet  Google Scholar 

  29. Ryu, E.K., Kun, Y., Wotao, Y.: ODE analysis of stochastic gradient methods with optimism and anchoring for minimax problems and GANs. arXiv:1905.10899 (2019)

Download references

Acknowledgements

The authors would like to thank the anonymous referees for their helpful comments, which included an improvement to Theorem 3.

Funding

The first author is supported by FWF (Austrian Science Fund) project P 29809-N32. The second author is supported in part by ARC grant DP200101197. The third author is supported in part by ARC grant DE200100063.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew K. Tam.

Additional information

Communicated by: Guoyin Li

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Csetnek, E.R., Eberhard, A. & Tam, M.K. Convergence rates for boundedly regular systems. Adv Comput Math 47, 62 (2021). https://doi.org/10.1007/s10444-021-09891-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-021-09891-6

Keywords

Mathematics Subject Classification (2010)

Navigation