Skip to main content

Advertisement

SpringerLink
  • Advances in Computational Mathematics
  • Journal Aims and Scope
  • Submit to this journal
Non-symmetric isogeometric FEM-BEM couplings
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Hybrid coupling of finite element and boundary element methods using Nitsche’s method and the Calderon projection

18 March 2022

Timo Betcke, Michał Bosy & Erik Burman

Penalty-Free Any-Order Weak Galerkin FEMs for Linear Elasticity on Quadrilateral Meshes

22 February 2023

Ruishu Wang, Zhuoran Wang & Jiangguo Liu

A family of mixed finite elements for the biharmonic equations on triangular and tetrahedral grids

13 August 2021

Jun Hu, Rui Ma & Min Zhang

FEM Solution of Exterior Elliptic Problems with Weakly Enforced Integral Non Reflecting Boundary Conditions

27 September 2019

S. Bertoluzza & S. Falletta

An Interface/Boundary-Unfitted EXtended HDG Method for Linear Elasticity Problems

01 February 2023

Yihui Han, Xiao-Ping Wang & Xiaoping Xie

Coupling FEM with a Multiple-Subdomain Trefftz Method

07 March 2020

Daniele Casati & Ralf Hiptmair

XIGA: An eXtended IsoGeometric analysis approach for multi-material problems

13 July 2022

L. Noël, M. Schmidt, … K. Maute

A High Order Compact FD Framework for Elliptic BVPs Involving Singular Sources, Interfaces, and Irregular Domains

29 July 2021

Kejia Pan, Dongdong He & Zhilin Li

Hybrid coupling of CG and HDG discretizations based on Nitsche’s method

18 September 2019

Andrea La Spina, Matteo Giacomini & Antonio Huerta

Download PDF
  • Open Access
  • Published: 19 August 2021

Non-symmetric isogeometric FEM-BEM couplings

  • Mehdi Elasmi  ORCID: orcid.org/0000-0002-7252-93391,
  • Christoph Erath2 &
  • Stefan Kurz1 

Advances in Computational Mathematics volume 47, Article number: 61 (2021) Cite this article

  • 259 Accesses

  • 1 Citations

  • Metrics details

Abstract

We present a coupling of the Finite Element and the Boundary Element Method in an isogeometric framework to approximate either two-dimensional Laplace interface problems or boundary value problems consisting of two disjoint domains. We consider the Finite Element Method in the bounded domains to simulate possibly non-linear materials. The Boundary Element Method is applied in unbounded or thin domains where the material behavior is linear. The isogeometric framework allows to combine different design and analysis tools: first, we consider the same type of NURBS parameterizations for an exact geometry representation and second, we use the numerical analysis for the Galerkin approximation. Moreover, it facilitates to perform h- and p-refinements. For the sake of analysis, we consider the framework of strongly monotone and Lipschitz continuous operators to ensure well-posedness of the coupled system. Furthermore, we provide a priori error estimates. We additionally show an improved convergence behavior for the errors in functionals of the solution that may double the rate under certain assumptions. Numerical examples conclude the work which illustrate the theoretical results.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. Aimi, A., Calabro, F., Diligenti, M., Sampoli, M.L., Sangalli, G., Sestini, A.: Efficient assembly based on B-spline tailored quadrature rules for the IgA-SGBEM. Comput. Methods Appl. Mech. Eng. 331, 327–342 (2018)

    Article  MathSciNet  Google Scholar 

  2. Aurada, M., Feischl, M., Führer, T., Karkulik, M., Melenk, J.M., Praetorius, D.: Classical FEM-BEM coupling methods: nonlinearities, well-posedness, and adaptivity. Comput. Mech. 51(4), 399–419 (2013)

    Article  MathSciNet  Google Scholar 

  3. Bantle, A.: On high-order NURBS-based boundary element methods in two dimensions-numerical integration and implementation. Ph.D. thesis, Fakultät für Mathematik und Wirtschaftswissenschaften, Universität Ulm (2015)

  4. Bazilevs, Y., Beirão da Veiga, L., Cottrell, J.A., Hughes, T.J.R., Sangalli, G.: Isogeometric analysis: approximation, stability and error estimates for h-refined meshes. Mathematical Models and Methods in Applied Sciences 16 (07), 1031–1090 (2006). https://doi.org/10.1142/S0218202506001455

    Article  MathSciNet  MATH  Google Scholar 

  5. Bielak, J., MacCamy, R.C.: An exterior interface problem in two-dimensional elastodynamics. Q. Appl. Math. 41(1), 143–159 (1983)

    Article  MathSciNet  Google Scholar 

  6. Bontinck, Z., Corno, J., Schöps, S., De Gersem, H.: Isogeometric analysis and harmonic stator–rotor coupling for simulating electric machines. Comput. Methods Appl. Mech. Eng. 334, 40–55 (2018). https://doi.org/10.1016/j.cma.2018.01.047. https://www.sciencedirect.com/science/article/pii/S0045782518300549

    Article  MathSciNet  Google Scholar 

  7. Buffa, A., Dölz, J., Kurz, S., Schöps, S., Vázquez, R., Wolf, F.: Multipatch approximation of the de Rham sequence and its traces in isogeometric analysis. Numer. Math. 144(1), 201–236 (2020)

    Article  MathSciNet  Google Scholar 

  8. Corno, J., de Falco, C., De Gersem, H., Schöps, S.: Isogeometric simulation of Lorentz detuning in superconducting accelerator cavities. Comput. Phys. Commun. 201, 1–7 (2016)

    Article  MathSciNet  Google Scholar 

  9. Costabel, M.: Boundary integral operators on Lipschitz domains: elementary results. SIAM J. Math. Anal. 19(3), 613–626 (1988)

    Article  MathSciNet  Google Scholar 

  10. Costabel, M.: A symmetric method for the coupling of finite elements and boundary elements. The Mathematics of Finite Elements and Applications VI (Uxbridge, 1987), 281–288 (1988)

    MathSciNet  MATH  Google Scholar 

  11. Cottrell, J.A., Hughes, T.J., Bazilevs, Y.: Isogeometric analysis: toward integration of CAD and FEA. Wiley (2009)

  12. Dölz, J., Kurz, S., Schöps, S., Wolf, F.: Isogeometric boundary elements in electromagnetism: Rigorous analysis, fast methods, and examples. SIAM J. Sci. Comput. 41(5), B983–B1010 (2019)

    Article  MathSciNet  Google Scholar 

  13. Egger, H., Erath, C., Schorr, R.: On the nonsymmetric coupling method for parabolic-elliptic interface problems. SIAM J. Numer. Anal. 56(6), 3510–3533 (2018). https://doi.org/10.1137/17M1158276

    Article  MathSciNet  MATH  Google Scholar 

  14. Erath, C.: Coupling of the finite volume element method and the boundary element method: an a priori convergence result. SIAM J. Numer. Anal. 50(2), 574–594 (2012). https://doi.org/10.1137/110833944

    Article  MathSciNet  MATH  Google Scholar 

  15. Erath, C., Of, G., Sayas, F.: A non-symmetric coupling of the finite volume method and the boundary element method. Numer. Math. 135 (3), 895–922 (2017)

    Article  MathSciNet  Google Scholar 

  16. Erath, C., Schorr, R.: An adaptive nonsymmetric finite volume and boundary element coupling method for a fluid mechanics interface problem. SIAM J. Sci. Comput. 39(3), A741–A760 (2017). https://doi.org/10.1137/16M1076721

    Article  MathSciNet  MATH  Google Scholar 

  17. de Falco, C., Reali, A., Vázquez, R.: GeoPDEs: a research tool for isogeometric analysis of PDEs. Adv. Eng. Softw. 42(12), 1020–1034 (2011)

    Article  Google Scholar 

  18. Feischl, M., Gantner, G., Haberl, A., Praetorius, D.: Adaptive 2d iga boundary element methods. Engineering Analysis with Boundary Elements 62, 141–153 (2016). https://doi.org/10.1016/j.enganabound.2015.10.003. http://www.sciencedirect.com/science/article/pii/S0955799715002155

    Article  MathSciNet  Google Scholar 

  19. Feischl, M., Gantner, G., Praetorius, D.: Reliable and efficient a posteriori error estimation for adaptive iga boundary element methods for weakly-singular integral equations. Comput. Methods Appl. Mech. Eng. 290, 362–386 (2015). https://doi.org/10.1016/j.cma.2015.03.013. http://www.sciencedirect.com/science/article/pii/S0045782515001231

    Article  MathSciNet  Google Scholar 

  20. Führer, T., Gantner, G., Praetorius, D., Schimanko, S.: Optimal additive schwarz preconditioning for adaptive 2d iga boundary element methods. Comput. Methods Appl. Mech. Eng. 351, 571–598 (2019). https://doi.org/10.1016/j.cma.2019.03.038. http://www.sciencedirect.com/science/article/pii/S0045782519301689

    Article  MathSciNet  Google Scholar 

  21. Gantner, G.: Adaptive isogeometrische bem. Master’s thesis, Vienna University of Technology. https://resolver.obvsg.at/urn:nbn:at:at-ubtuw:1-64362 (2014)

  22. Gantner, G.: Optimal adaptivity for splines in finite and boundary element methods. Ph.D. thesis, Vienna University of Technology. https://resolver.obvsg.at/urn:nbn:at:at-ubtuw:1-105591 (2017)

  23. Harbrecht, H., Randrianarivony, M.: From computer aided design to wavelet bem. Comput. Methods Appl. Mech. Eng. 13(2), 69–82 (2009). https://doi.org/10.1007/s00791-009-0129-1

    Article  MathSciNet  MATH  Google Scholar 

  24. Hughes, T., Cottrell, J.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194(39), 4135–4195 (2005). https://doi.org/10.1016/j.cma.2004.10.008. http://www.sciencedirect.com/science/article/pii/S0045782504005171

    Article  MathSciNet  Google Scholar 

  25. Johnson, C., Nédélec, J.C.: On the coupling of boundary integral and finite element methods. Mathematics of Computation 35, 1063–1079 (1980)

    Article  MathSciNet  Google Scholar 

  26. Kurz, S.: Die numerische Behandlung elektromechanischer Systeme mit Hilfe der Kopplung der Methode der finiten Elemente und der Randelementmethode. VDI-Verlag (1998)

  27. Kurz, S., Fetzer, J., Kube, T., Lehner, G., Rucker, W.M.: BEM-FEM coupling in electromechanics: A 2-D watch stepping motor driven by a thin wire coil. Appl. Comput. Electromagn. Soc. J. 12, 135–139 (1997)

    Google Scholar 

  28. MacCamy, R.C., Suri, M.: A time-dependent interface problem for two-dimensional eddy currents. Quart. Appl. Math. 44, 675–690 (1987)

    Article  MathSciNet  Google Scholar 

  29. Marussig, B., Zechner, J., Beer, G., Fries, T.P.: Fast isogeometric boundary element method based on independent field approximation. Comput. Methods Appl. Mech. Eng. 284, 458–488 (2015). https://doi.org/10.1016/j.cma.2014.09.035. http://www.sciencedirect.com/science/article/pii/S0045782514003582. Isogeometric Analysis Special Issue

    Article  MathSciNet  Google Scholar 

  30. McLean, W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  31. Of, G., Steinbach, O.: Is the one-equation coupling of finite and boundary element methods always stable? ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift fü,r Angewandte Mathematik und Mechanik 93(6-7), 476–484 (2013)

    Article  MathSciNet  Google Scholar 

  32. Of, G., Steinbach, O.: On the ellipticity of coupled finite element and one-equation boundary element methods for boundary value problems. Numer. Math. 127(3), 567–593 (2014)

    Article  MathSciNet  Google Scholar 

  33. Pechstein, C.: Multigrid-newton-methods for nonlinear magnetostatic problems. Master’s thesis, Johannes Kepler University of Linz, Institute of Computational Mathematics, Linz. http://www.numa.uni-linz.ac.at/Teaching/Diplom/Finished/pechstein (2004)

  34. Piegl, L., Tiller, W.: The NURBS book. Springer Science & Business Media (2012)

  35. Politis, C., Ginnis, A.I., Kaklis, P.D., Belibassakis, K., Feurer, C.: An isogeometric bem for exterior potential-flow problems in the plane. In: 2009 SIAM/ACM Joint Conference on Geometric and Physical Modeling, SPM ’09. https://doi.org/10.1145/1629255.1629302, pp 349–354. Association for Computing Machinery, New York (2009)

  36. Römer, U.: Numerical approximation of the magnetoquasistatic model with uncertainties and its application to magnet design. Ph.D. thesis, Institut für Theorie Elektromagnetischer Felder, Technische Universität Darmstadt (2015)

  37. Sauter, S.A., Schwab, C.: Boundary element methods. In: Boundary Element Methods, pp 183–287. Springer (2010)

  38. Sayas, F.: The validity of Johnson–Nédélec’s BEM–FEM coupling on polygonal interfaces. SIAM J. Numer. Anal. 47(5), 3451–3463 (2009)

    Article  MathSciNet  Google Scholar 

  39. Schwab, C., Wendland, W.: On the extraction technique in boundary integral equations. Mathematics of Computation 68(225), 91–122 (1999)

    Article  MathSciNet  Google Scholar 

  40. Scott, M., Simpson, R., Evans, J., Lipton, S., Bordas, S., Hughes, T., Sederberg, T.: Isogeometric boundary element analysis using unstructured t-splines. Comput. Methods Appl. Mech. Eng. 254, 197–221 (2013). https://doi.org/10.1016/j.cma.2012.11.001. http://www.sciencedirect.com/science/article/pii/S0045782512003386

    Article  MathSciNet  Google Scholar 

  41. Steinbach, O.: Numerical approximation methods for elliptic boundary value problems: finite and boundary elements. Springer Science & Business Media (2007)

  42. Steinbach, O.: A note on the stable one-equation coupling of finite and boundary elements. SIAM J. Numer. Anal. 49(4), 1521–1531 (2011)

    Article  MathSciNet  Google Scholar 

  43. Steinbach, O.: On the stability of the non-symmetric BEM/FEM coupling in linear elasticity. Computational Mechanics 51(4), 421–430 (2013)

    Article  MathSciNet  Google Scholar 

  44. Beirão da Veiga, L., Buffa, A., Sangalli, G., Vázquez, R.: Mathematical analysis of variational isogeometric methods. Acta Numerica 23, 157–287 (2014)

    Article  MathSciNet  Google Scholar 

  45. Vázquez, R.: A new design for the implementation of isogeometric analysis in octave and matlab: Geopdes 3.0. Computers & Mathematics with Applications 72(3), 523–554 (2016). https://doi.org/10.1016/j.camwa.2016.05.010. https://www.sciencedirect.com/science/article/pii/S0898122116302681

    Article  MathSciNet  Google Scholar 

  46. Zeidler, E.: Nonlinear functional analysis and its applications II/B: Nonlinear monotone operators. Springer (1986)

Download references

Funding

Open Access funding enabled and organized by Projekt DEAL. The research of Mehdi Elasmi was supported in parts by the Excellence Initiative of the German Federal and State Governments and the Graduate School of Computational Engineering at TU Darmstadt.

Author information

Authors and Affiliations

  1. Technische Universität Darmstadt, Institute for Accelerator Science and Electromagnetic Fields, Schlossgartenstraße 8, 64289, Darmstadt, Germany

    Mehdi Elasmi & Stefan Kurz

  2. University College of Teacher Education Vorarlberg (PH Vorarlberg), Liechtensteinerstraße 33–37, 6800, Feldkirch, Austria

    Christoph Erath

Authors
  1. Mehdi Elasmi
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Christoph Erath
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Stefan Kurz
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Mehdi Elasmi.

Additional information

Communicated by: Long Chen

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Elasmi, M., Erath, C. & Kurz, S. Non-symmetric isogeometric FEM-BEM couplings. Adv Comput Math 47, 61 (2021). https://doi.org/10.1007/s10444-021-09886-3

Download citation

  • Received: 17 July 2020

  • Accepted: 22 July 2021

  • Published: 19 August 2021

  • DOI: https://doi.org/10.1007/s10444-021-09886-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Finite element method
  • Boundary element method
  • Non-symmetric coupling
  • Isogeometric analysis
  • Non-linear operators
  • Laplacian interface problem
  • Boundary value problems
  • Multiple domains
  • Well-posedness
  • a priori estimate
  • Super-convergence
  • Electromagnetics
  • Electric machines

Mathematics Subject Classification (2010)

  • 65N12
  • 65N30
  • 65N38
  • 78M10
  • 78M15
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.