Skip to main content
Log in

Two-scale finite element discretizations for nonlinear eigenvalue problems in quantum physics

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, some two-scale finite element discretizations are introduced and analyzed for a class of nonlinear elliptic eigenvalue problems on tensor product domains. It is shown that the solution obtained by the standard finite element method on a one-scale fine grid can be numerically replaced with a combination of some solutions on a coarse grid and some univariate fine grids by two-scale finite element discretizations. Compared with the standard finite element solution, the two-scale finite element approximations save computational cost significantly while achieving the same accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Babuska, I., Osborn, J.E.: Eigenvalue problems. In: Handbook of Numerical Analysis, vol. II, pp 641–787. North-Holland, Amsterdam (1991)

  2. Bank, R.E.: Hierarchical bases and the finite element method. Acta Numer. 5, 1–43 (1996)

    Article  MathSciNet  Google Scholar 

  3. Bao, W.: The nonlinear Schrödinger equation and applications in Bose-Einstein condensation and plasma physics. Master Review Lecture Note Series, vol 9, IMS, NUS (2007)

  4. Bao, W., Du, Q.: Computing the ground state solution of Bose-Einstein condensates by a normalized gradient flow. SIAM J. Sci. Comput. 25, 1674–1697 (2004)

    Article  MathSciNet  Google Scholar 

  5. Braun, M., Schweizer, W., Herold, H.: Finite-element calculations for the S states of helium. Phys. Rev A 48, 1916–1920 (1993)

    Article  Google Scholar 

  6. Bungartz, H.J., Griebel, M.: Sparse grids. Acta Numer. 13, 1–123 (2004)

    Article  MathSciNet  Google Scholar 

  7. Bungartz, H.J., Griebel, M., Rüde, U.: Extrapolation, combination, and sparse grid techniques for elliptic boundary value problems. Comput. Methods Appl. Mech. Engrg. 116, 243–252 (1994)

    Article  MathSciNet  Google Scholar 

  8. Cancès, E., Chakir, R., He, L., Maday, Y.: Two-grid methods for a class of nonlinear elliptic eigenvalue problems. IMA J. Numer. Anal. 38, 605–645 (2018)

    Article  MathSciNet  Google Scholar 

  9. Cancès, E., Chakir, R., Maday, Y.: Numerical analysis of nonlinear eigenvalue problems. J. Sci. Comput. 45, 90–117 (2010)

    Article  MathSciNet  Google Scholar 

  10. Cancès, E., Chakir, R., Maday, Y.: Numerical analysis of the planewave discretization of some orbital-free and Kohn-Sham models. Math. Model. Numer. Anal. 46, 341–388 (2012)

    Article  MathSciNet  Google Scholar 

  11. Cancès, E., Defranceschi, M., Kutzelnigg, W., Le Bris, C., Maday, Y.: Computational quantum chemistry: a primer. In: Ciarlet, P.h., Le Bris, C. (eds.) Handbook of numerical analysis, volume X: Special Volume: Computational Chemistry, pp 3–270, North-Holland (2003)

  12. Caradoc-Davies, B.M., Ballagh, R.J., Burnett, K.: Coherent dynamics of vortex formation in trapped Bose-Einstein condensates. Phys. Rev. Lett. 83, 895–898 (1999)

    Article  Google Scholar 

  13. Chen, H., Gong, X., He, L., Yang, Z., Zhou, A.: Numerical analysis of finite dimensional approximations of Kohn-Sham models. Adv. Comput. Math. 38, 225–256 (2013)

    Article  MathSciNet  Google Scholar 

  14. Chen, H., Gong, X., Zhou, A.: Numerical approximations of a nonlinear eigenvalue problem and applications to a density functional model. Math. Methods Appl. Sci. 33, 1723–1742 (2010)

    Article  MathSciNet  Google Scholar 

  15. Chen, H., He, L., Zhou, A.: Finite element approximations of nonlinear eigenvalue problems in quantum physics. Comput. Methods Appl. Mech. Engrg. 200, 1846–1865 (2011)

    Article  MathSciNet  Google Scholar 

  16. Chen, H., Liu, F., Zhou, A.: A two-scale higher-order finite element discretization for Schrödinger equation. J. Comput. Math. 27, 315–337 (2009)

    Article  MathSciNet  Google Scholar 

  17. Ciarlet, P.G.: The finite element method for elliptic problems. North-Holland, Amsterdam (1978)

  18. Dai, X., Zhou, A.: Three-scale finite element discretizations for quantum eigenvalue problems. SIAM J. Numer. Anal. 46, 295–324 (2008)

    Article  MathSciNet  Google Scholar 

  19. Gao, X., Liu, F., Zhou, A.: Three-scale finite element eigenvalue discretizations. BIT 48(3), 533–562 (2008)

    Article  MathSciNet  Google Scholar 

  20. Garcke, J., Griebel, M.: On the computation of the eigenproblems of hydrogen and helium in strong magnetic and electric fields with the sparse grid combination technique. J. Comput. Phys. 165(2), 694–716 (2000)

    Article  MathSciNet  Google Scholar 

  21. Gong, X., Shen, L., Zhou, A.: Finite element approximations for Schrödinger equations with applications to electronic structure computations. J. Comput. Math. 26, 1–14 (2008)

    MathSciNet  MATH  Google Scholar 

  22. Griebel, M., Schneider, M., Zenger, C.: A combination technique for the solution of sparse grid problem. In: de Groen, P., Beauwens, P. (eds.) Iterative Methods in Linear Algebra, IMACS, pp 263–281. Elsevier, North Holland (1992)

  23. Harrison, R., Moroz, I., Tod, K.P.: A numerical study of the Schrödinger-Newton equations. Nonlinearity 16, 101–122 (2003)

    Article  MathSciNet  Google Scholar 

  24. Hegland, M.: Adaptive sparse grids. ANZIAM J. 44, 335–353 (2003)

    Article  MathSciNet  Google Scholar 

  25. Hegland, M., Garcke, J., Challis, V.: The combination technique and some generalisations. Linear Algebra Appl. 420, 249–275 (2007)

    Article  MathSciNet  Google Scholar 

  26. Hennart, J.P., Mund, E.H.: On the h- and p-versions of the extrapolated Gordon’s projector with applications to elliptic equations. SIAM J. Sci. Stat. Comput. 9(5), 773–791 (1988)

    Article  MathSciNet  Google Scholar 

  27. Holst, M., Tsogtgerel, G., Zhu, Y.: Local convergence of adaptive methods for nonlinear partial differential equations. arXiv:1001.1382 (2010)

  28. Lieb, E.H.: Thomas-Fermi and related theories of atoms and molecules. Rev. Mod. Phys. 53, 603–641 (1981)

    Article  MathSciNet  Google Scholar 

  29. Lin, Q., Yan, N., Zhou, A.: A sparse finite element method with high accuracy. Part, I. Numer. Math. 88(4), 731–742 (2001)

    Article  MathSciNet  Google Scholar 

  30. Liu, F.: The first-principles studies: two-scale finite element discretizations and the calculations of ideal strength (in Chinese). Ph. D Thesis supervised by Professor A. Zhou, LSEC, Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and Systems Science, Chinese Academy of Sciences (2006)

  31. Liu, F., Zhou, A.: Two-scale finite element discretizations for partial differential equations. J. Comput. Math. 24, 373–392 (2006)

    MathSciNet  MATH  Google Scholar 

  32. Liu, F., Zhou, A.: Localizations and parallelizations for two-scale finite element discretizations. Commun Pure Appl. Anal. 6(3), 757–773 (2007)

    Article  MathSciNet  Google Scholar 

  33. Liu, F., Zhou, A.: Two-scale Boolean Galerkin discretizations for Fredholm integral equations of the second kind. SIAM J. Numer. Anal. 45, 296–312 (2007)

    Article  MathSciNet  Google Scholar 

  34. Penrose, R.: On gravity’s role in quantum state reduction. Gen. Rel. Grav. 28, 581–600 (1996)

    Article  MathSciNet  Google Scholar 

  35. Pflaum, C.: Convergence of the combination technique for second-order elliptic differential equations. SIAM J. Numer. Anal. 34(6), 2431–2455 (1997)

    Article  MathSciNet  Google Scholar 

  36. Pflaum, C., Zhou, A.: Error analysis of the combination technique. Numer. Math. 84, 327–350 (1999)

    Article  MathSciNet  Google Scholar 

  37. Pousin, J., Rappaz, J.: Consistency, stability, a priori and a posteriori errors for Petrov-Galerkin methods applied to nonlinear problems. Numer. Math. 69, 213–231 (1994)

    Article  MathSciNet  Google Scholar 

  38. Wang, Y.A., Carter, E.A.: Orbital-free kinetic-energy density functional theory. In: Schwartz, S.D. (ed.) Theoretical Methods in Condensed Phase Chemistry, pp 117–184. Kluwer, Dordrecht (2000)

  39. White, S.R., Wilkins, J.W., Teter, M.P.: Finite-element method for electronic structure. Phys. Rev. B 39, 5819–5833 (1989)

    Article  Google Scholar 

  40. Xu, J.: Two-grid discretization techniques for linear and nonlinear PDEs. SIAM J. Numer. Anal. 33, 1759–1777 (1996)

    Article  MathSciNet  Google Scholar 

  41. Xu, J., Zhou, A.: Local parallel finite element algorithms based on two-grid discretizations. Math. Comput. 69, 881–909 (2000)

    Article  MathSciNet  Google Scholar 

  42. Xu, J., Zhou, A.: A two-grid discretization scheme for eigenvalue problems. Math. Comput. 70, 17–25 (2001)

    Article  MathSciNet  Google Scholar 

  43. Xu, Y., Zhou, A.: Fast Boolean approximation methods for solving integral equations in high dimensions. J. Integr. Equ. Appl. 16, 83–110 (2004)

    Article  MathSciNet  Google Scholar 

  44. Yserentant, H.: On the multi-level splitting of finite element spaces. Numer. Math. 49, 379–412 (1986)

    Article  MathSciNet  Google Scholar 

  45. Yserentant, H.: Old and new convergence proofs for multigrid methods. Acta Numer. 2, 285–326 (1993)

    Article  MathSciNet  Google Scholar 

  46. Zenger, C.: Sparse grids. In: Parallel Algorithms for Partial Differential Equations (Kiel, 1990), volume 31 of Notes Numer. Fluid Mech., pp 241–251. Vieweg, Braunschweig (1991)

  47. Zhou, A.: An analysis of finite-dimensional approximations for the ground state solution of Bose-Einstein condensates. Nonlinearity 17, 541–550 (2004)

    Article  MathSciNet  Google Scholar 

  48. Zhou, A.: Finite dimensional approximations for the electronic ground state solution of a molecular system. Math. Methods Appl. Sci. 30, 429–447 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank Professor Huajie Chen and Professor Aihui Zhou for fruitful discussions and assistance on numerical computations.

Funding

This work was supported by the National Natural Science Foundation of China (grant 11971066 and 11771467) and the disciplinary funding of Central University of Finance and Economics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Liu.

Additional information

Communicated by: Long Chen

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, P., Liu, F. Two-scale finite element discretizations for nonlinear eigenvalue problems in quantum physics. Adv Comput Math 47, 59 (2021). https://doi.org/10.1007/s10444-021-09883-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-021-09883-6

Keywords

Mathematics Subject Classification (2010)

Navigation