Skip to main content
Log in

Pointwise error estimate in difference setting for the two-dimensional nonlinear fractional complex Ginzburg-Landau equation

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we propose a three-level linearized implicit difference scheme for the two-dimensional spatial fractional nonlinear complex Ginzburg-Landau equation. We prove that the difference scheme is stable and convergent under mild conditions. The optimal convergence order \(\mathcal {O}(\tau ^{2}+{h_{x}^{2}}+{h_{y}^{2}})\) is obtained in the pointwise sense by developing a new two-dimensional fractional Sobolev imbedding inequality based on the work in Kirkpatrick et al. (Commun. Math. Phys. 317, 563–591 2013), an energy argument and careful attention to the nonlinear term. Numerical examples are presented to verify the validity of the theoretical results for different choices of the fractional orders α and β.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akhmediev, N.N., Ankiewicz, A., Soto-Crespo, J.M.: Multisoliton solutions of the complex Ginzburg-Landau equation. Phys. Rev. Lett. 79(21), 4047–4051 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aranson, I.S., Kramer, L.: The world of the complex Ginzburg-Landau equation. Rev. Modern Phys. 74, 99–143 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arshed, S.: Soliton solutions of fractional complex Ginzburg-Landau equation with Kerr law and non-Kerr law media. Optik 160, 322–332 (2018)

    Article  Google Scholar 

  4. Bao, W., Tang, Q.: Numerical study of quantized vortex interaction in the Ginzburg-Landau equation on bounded domains. Commun. Comput. Phys. 14(3), 819–850 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bartels, S.: A posteriori error analysis for time-dependent Ginzburg-Landau type equations. Numer. Math. 99, 557–583 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Çelik, C., Duman, M.: Crank-nicolson method for the fractional diffusion equation with the Riesz fractional derivative. J. Comput. Phys. 231, 1743–1750 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Defterli, O., D’Elia, M., Du, Q., Gunzburger, M., Lehoucq, R., Meerschaert, M.M.: Fractional diffusion on bounded domains. Fract. Calc. Appl. Anal. 18, 342–360 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Degong, P., Jin, S., Tang, M.: On the time splitting spectral method for the complex Ginzburg-Landau equation in the large time and space scale limit. SIAM J. Sci. Comput. 30(5), 2466–2487 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Du, Q., Gunzburger, M., Lehoucq, R.B., Zhou, K.: Analysis and approximation of nonlocal diffusion problems with volume constraints. SIAM Rev. 54, 667–696 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Du, Q., Gnnzburger, M., Peterson, J.: Finite element approximation of a periodic Ginzburg-Landau model for type-II superconductors. Numer. Math. 64, 85–114 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fei, M., Huang, C., Wang, N., Zhang, G.: Galerkin-Legendre spectral method for the nonlinear Ginzburg-Landau equation with the Riesz fractional derivative. Math. Meth. Appl. Sci. 15, 2711–2730 (2021)

    Article  MathSciNet  Google Scholar 

  12. Feynman, R.P., Hibbs, A.R.: Quantum mechanics and path integrals. McGraw-Hill, New York (1965)

    MATH  Google Scholar 

  13. Gorenflo, R., Mainardi, F.: Random walk models for space-fractional diffusion processes. Fract. Calc. Appl. Anal. 1(2), 167–191 (1998)

    MathSciNet  MATH  Google Scholar 

  14. Gu, X.-M., Shi, L., Liu, T.: Well-posedness of the fractional Ginzburg-Landau equation. Appl. Anal. 98(14), 2545–2558 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  15. Guo, B., Huo, Z.: Global well-posedness for the fractional nonlinear Schrödinger equation. Commun. Partial Differ. Equ. 36, 247–255 (2011)

    Article  MATH  Google Scholar 

  16. Guo, B., Huo, Z.: Well-posedness for the nonlinear fractional schrödinger equation and inviscid limit behavior of solution for the fractional Ginzburg-Landau equation. Fract. Calc. Appl. Anal. 16(1), 226–242 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hao, Z.P., Sun, Z.Z.: A linearized high-order difference scheme for the fractional Ginzburg-Landau equation. Numer. Meth. Part. D. E. 33(1), 105–124 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. He, D., Pan, K.: An unconditionally stable linearized difference scheme for the fractional Ginzburg-Landau equation. Numer. Algorithms 79(3), 899–925 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Heydari, M.H., Hosseininia, M., Atangana, A., Avazzadeh, Z.: A meshless approach for solving nonlinear variable-order time fractional 2D Ginzburg-Landau equation. Eng. Anal. Bound. Elem. 120, 166–179 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hu, H.L., Jin, X., He, D., Pan, K., Zhang, Q.: A conservative difference scheme with optimal pointwise error estimates for two-dimensional space fractional nonlinear Schrödinger equations. arXiv:1910.08311

  21. Kirkpatrick, K., Lenzmann, E., Staffilani, G.: On the continuum limit for discrete NLS with long-range lattice interactions. Commun. Math. Phys. 317, 563–591 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kitzhofer, G., Koch, O., Weinmüller, E.B.: Pathfollowing for essentially singular boundary value problems with application to the complex Ginzburg-Landau equation. BIT Numer. Math. 49, 141–160 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Laskin, N.: Fractional quantum mechanics. Phys. Rev. E 62, 3135–3145 (2000)

    Article  MATH  Google Scholar 

  24. Laskin, N.: Fractional quantum mechanics and lévy path integrals. Phys. Lett. A 268, 298–305 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, J., Xia, L.: Well-posedness of fractional Ginzburg-Landau equation in Sobolev spaces. Appl. Anal. 92(5), 1074–1084 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Li, M., Huang, C.: An efficient difference scheme for the coupled nonlinear fractional Ginzburg-Landau equations with the fractional Laplacian. Numer. Meth. Part. D. E. 35(1), 394–421 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  27. Li, M., Huang, C., Wang, N.: Galerkin element method for the nonlinear fractional Ginzburg-Landau equation. Appl. Numer. Math. 118, 131–149 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lu, H., Bates, P.W., Lü, S.J., Zhang, M.J.: Dynamics of the 3-D fractional complex Ginzburg-Landau equation. J. Differ. Equations 259, 5276–5301 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lu, H., Lü, S. J., Zhang, M.J.: Fourier spectral approximations to the dynamics of 3D fractional complex Ginzburg-Landau equation. Discrete Cont. Dyn. S.-A 37(5), 2539–2564 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Millot, V., Sire, Y.: On a fractional Ginzburg-Landau equation and 1/2-Harmonic maps into spheres. Arch. Ration. Mech. Anal. 215, 125–210 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Mohebbi, A.: Fast and high-order numerical algorithms for the solution of multidimensional nonlinear fractional Ginzburg-Landau equation. Eur. Phys. J. Plus 133(2), 67 (2018)

    Article  MathSciNet  Google Scholar 

  32. Owolabi, K.M., Pindza, E.: Numerical simulation of multidimensional nonlinear fractional Ginzburg-Landau equations. Discret. Contin. Dyn. Syst.-Ser. S 13(3), 835–851 (2020)

    MathSciNet  MATH  Google Scholar 

  33. Peng, L., Zhou, Y., Ahmad, B.: The well-posedness for fractional nonlinear schrödinger equations. Comput. Math. Appl. 77, 1998–2005 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  34. Pu, X., Guo, B.: Well-posedness and dynamics for the fractional Ginzburg-Landau equation. Appl. Anal. 92(2), 31–33 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Sakaguchi, H., Malomed, B.A.: Stable solitons in coupled Ginzburg-Landau equations describing Bose-Einstein condensates and nonlinear optical waveguides and cavities. Physica D 183, 282–292 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  36. Shu, J., Li, P., Zhang, J., Liao, O.: Random attractors for the stochastic coupled fractional Ginzburg-Landau equation with additive noise. J. Math. Phys. 56, 102702 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Sun, Z.Z.: A second-order accurate linearized difference scheme for the two-dimensional Cahn-Hilliard equation. Math. Comp. 64, 1463–1471 (1995)

    MathSciNet  MATH  Google Scholar 

  38. Takac, P., Jungel, A.: A nonstiff Euler discretization of the complex Ginzburg-Landau equation in one space dimension. SIAM J. Numer. Anal. 38(1), 292–328 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  39. Tarasov, V., Zaslavsky, G.: Fractional dynamics of coupled oscillators with long-range interaction. Chaos 16, 023110 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  40. Tarasov, V., Zaslavsky, G.: Fractional Ginzburg-Landau equation for fractal media. Physica A 354, 249–261 (2005)

    Article  Google Scholar 

  41. Wang, N., Huang, C.: An efficient split-step quasi-compact finite difference method for the nonlinear fractional Ginzburg-Landau equations. Comput. Math. Appl. 75, 2223–2242 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  42. Wang, P., Huang, C.: An efficient fourth-order in space difference scheme for the nonlinear fractional Ginzburg-Landau equation. BIT Numer. Math. 58(3), 783–805 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  43. Wang, P., Huang, C.: An implicit midpoint difference scheme for the fractional Ginzburg-Landau equation. J. Comput. Phys. 312, 31–49 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  44. Wang, P., Huang, C.: Split-step alternating direction implicit difference scheme for the fractional schrödinger equation in two dimensions. Comput. Math. Appl. 71(5), 1114–1128 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  45. Wang, P., Huang, C., Zhao, L.: Point-wise error estimate of a conservative difference scheme for the fractional schrödinger equation. J. Comput. Appl. Math. 306, 231–247 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  46. Wu, Y.S.: Multiparticle quantum mechanics obeying fractional statistics. Phys. Rev. Lett. 53, 111–114 (1984)

    Article  MathSciNet  Google Scholar 

  47. Zaky, M.A., Hendy, A.S., Macas-Daz, J.E.: High-order finite difference/spectral-Galerkin approximations for the nonlinear time-space fractional Ginzburg-Landau equation. Eng. Anal. Bound Elem. https://doi.org/10.1002/num.22630 (2020)

  48. Zeng, F., Liu, F., Li, C., Burrage, K., Turner, I., Anh, V.: A Crank-Nicolson ADI spectral method for a two-dimensional Riesz space fractional nonlinear reaction-diffusion equation. SIAM J. Numer. Anal. 52(6), 2599–2622 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  49. Zeng, W., Xiao, A., Li, X.: Error estimate of Fourier pseudo-spectral method for multidimensional nonlinear complex fractional Ginzburg-Landau. Equations. Appl. Math. Lett. 93, 40–45 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  50. Zhang, L., Zhang, Q., Sun, H. -W.: Exponential Runge-Kutta method for two-dimensional nonlinear fractional complex Ginzburg-Landau equations. J. Sci. Comput 83. Article 59, https://doi.org/10.1007/s10915-020-01240-x (2020)

  51. Zhang, M., Zhang, G.-F., Liao, L.-D.: Fast iterative solvers and simulation for the space fractional Ginzburg-Landau equations Ginzburg-Landau equations. Comput. Math. Appl. 78(5), 1793–1800 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  52. Zhang, Q., Lin, X., Pan, K., Ren, Y.: Linearized ADI schemes for two-dimensional space-fractional nonlinear Ginzburg-Landau equation. Comput. Math. Appl. 80, 1201–1220 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  53. Zhang, Q., Zhang, L., Sun, H.: A three-level finite difference method with preconditioning technique for two-dimensional nonlinear fractional complex Ginzburg-Landau equations. J. Comput. Appl. Math. 389 https://doi.org/10.1016/j.cam.2020.113355 (2021)

  54. Zhang, Z., Li, M., Wang, Z.: A linearized Crank-Nicolson Galerkin FEMs for the nonlinear fractional Ginzburg-Landau equation. Appl. Anal. 98 (15), 2648–2667 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  55. Zhao, X., Sun, Z., Hao, Z.: A fourth-order compact ADI scheme for two-dimensional nonlinear space fractional schrödinger equation. SIAM J. Sci. Comput. 36(6), 2865–2886 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author is grateful to Professor Kejia Pan and Dr. Lu Zhang for helpful discussion. The authors thank the anonymous referees for their constructive comments and valuable suggestions, which greatly improved the original manuscript of the paper.

Funding

The work of the first author was partially supported by the Natural Science Foundation of China (Grant No. 11501514) and Visiting Scholar Program of China Scholarship Council (Grant No. 201908330528). The work of the third author was partially supported by the Natural Science Foundation of China (Grant No. 11671081).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qifeng Zhang.

Additional information

Communicated by: Martin Stynes

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix: A

Define \(\hat {m}_{1}=M_{x}-1\), \(\hat {m}_{2}=M_{y}-1\), and \(\hat {m}=\hat {m}_{1}\hat {m}_{2}\). Let v and u be the \(\hat {m}\)-dimensional vectors defined by

$$v=\left[v_{1,1},\ldots,v_{\hat{m}_{1},1},v_{1,2}, v_{2,2}, \cdots, v_{\hat m_{1},2},\ldots, v_{1,\hat{m}_{2}},\ldots,v_{\hat{m}_{1},\hat{m}_{2}}\right]^{\intercal}$$

and

$$u=\left[u_{1,1},\ldots,u_{\hat{m}_{1},1},u_{1,2}, u_{2,2}, {\cdots} , u_{\hat m_{1},2},\ldots, u_{1,\hat{m}_{2}},\ldots,u_{\hat{m}_{1},\hat{m}_{2}}\right]^{\intercal}.$$

By Property 2.1 in [6], it is easy to know that

$$ \ G_{\mu,m}=\left[\begin{array}{cccccc} g_{0}^{(\mu)}& g_{-1}^{(\mu)}&g_{-2}^{(\mu)}&\cdots&g_{-m+2}^{(\mu)}&g_{-m+1}^{(\mu)}\\ g_{1}^{(\mu)}& g_{0}^{(\mu)}&g_{-1}^{(\mu)}&\ldots&\ldots&g_{-m+2}^{(\mu)}\\ g_{2}^{(\mu)}&g_{1}^{(\mu)}&g_{0}^{(\mu)}&\ddots&\ddots&\vdots\\ \vdots&\ddots&\ddots&\ddots&\ddots&g_{-2}^{(\mu)}\\ g_{m-2}^{(\mu)}&\ddots&\ddots&\ddots&g_{0}^{(\mu)}&g_{-1}^{(\mu)}\\ g_{m-1}^{(\mu)}&g_{m-2}^{(\mu)}&\cdots&g_{2}^{(\mu)}&g_{1}^{(\mu)}&g_{0}^{(\mu)} \end{array}\right] $$

is a symmetric positive definite Toeplitz matrix with \((\mu ,m)=(\alpha ,\hat {m}_{1})\) or \((\beta ,\hat {m}_{2})\). Then, the matrix form of the operator \(-(\delta _{x}^{\alpha }+\delta _{y}^{\beta })v_{ij}\), (xi, yj) ∈Ωh is Av, here

$$ A =I_{\hat{m}_{2}}\otimes \left( \frac{1}{h_{x}^{\alpha}}G_{\alpha,\hat{m}_{1}}\right)+\left( \frac{1}{h_{y}^{\beta}}G_{\beta,\hat{m}_{2}}\right)\otimes I_{\hat{m}_{1}}, $$
Table 4 The maximum norm errors versus spatial grid size reduction and convergence orders of the difference scheme (3.12)–(3.15) in space with fixed τ = 1/16, T = 1
Fig. 3
figure 3

The numerical solutions and corresponding contour profiles. The parameters are taken with T = 0.1, 0.4, 1.6, 3.2 from left to right and the grid sizes τ = 0.01, h = 5/16, α = β = 1.5

Fig. 4
figure 4

The numerical solutions at the fixed time T = 2 and corresponding contour profiles. The parameters are taken with (α,β) = (1.1, 1.1), (1.2, 1.8), (1.5, 1.5), (1.9, 1.9) from left to right and the grid sizes M = 64, N = 100

where ⊗ denotes the Kronecker product and Im the identity matrix of the order m. Furthermore, we know that A is a symmetric positive definite matrix by the properties of the Kronecker product. Therefore, there exists a symmetric positive matrix denoted by Λ such that

$$ v^{\intercal}A v = v^{\intercal}{\varLambda}^{2}v =({\varLambda} v)^{\intercal} ({\varLambda} v). $$

Define the corresponding difference operator Λα,β as \({\varLambda }^{\alpha ,\beta }v_{i,j}=({\varLambda } v)_{(j-1)\hat {m}_{1}+i}\), then we have

$$ (-(\delta_{x}^{\alpha}+\delta_{y}^{\beta}) u,v) = u^{\intercal} A v =u^{\intercal} {\varLambda}^{2}v= ({\varLambda} u)^{\intercal} {\varLambda} v = ({\varLambda}^{\alpha,\beta}u, {\varLambda}^{\alpha,\beta} v). $$

Appendix: B

The following lemma plays an important role in deriving the local truncation errors \(R_{ij}^{n}\) and △tRij.

Lemma B.7

Let g(t) ∈ C3([tn− 1, tn+ 1]); then

$$ \begin{array}{@{}rcl@{}} && \frac{g(t_{n+1})-g(t_{n-1})}{2\tau} = g^{\prime}(t_{n}) +\frac{\tau^{2}}{4} {{\int}_{0}^{1}} [g^{(3)}(t_{n}+s\tau)+g^{(3)}(t_{n}-s\tau)](1-s)^{2}ds, \end{array} $$
(B.1)
$$ \begin{array}{@{}rcl@{}} && \frac{g(t_{n+1})+g(t_{n-1})}{2} = g(t_{n}) +\frac{\tau^{2}}{2} {{\int}_{0}^{1}} [g^{(2)}(t_{n}+s\tau)+g^{(2)}(t_{n}-s\tau)](1-s)ds. \end{array} $$
(B.2)

Proof

Based on the Taylor expansion with the integral remainder

$$ \begin{array}{@{}rcl@{}} g(t_{n}+\tau) = \sum\limits_{i=0}^{k} \frac{\tau^{i}}{i!}g^{(i)}(t_{n})+\frac{\tau^{k+1}}{k!}{{\int}_{0}^{1}} g^{(k+1)}(t_{n}+s\tau)(1-s)^{k} ds,\quad g\in C^{k+1}, \end{array} $$

the results follow. □

Lemma B.8

Suppose \(\partial _{t} q(\cdot ,t_{n}) \in {\mathscr{C}}^{2+\alpha }(\mathbb {R})\). Then, it holds

$$ \begin{array}{@{}rcl@{}} \left( -h_{x}^{-\alpha}\delta_{x}^{\alpha}\triangle_{t} q(x,t_{n})\right) - \partial_{x}^{\alpha}\triangle_{t} q(x,t_{n}) = \mathcal{O}({h_{x}^{2}}) \end{array} $$
(B.3)

uniformly for \(x\in \mathbb {R}\) and tn ∈ [0,T].

Proof

Let p(x,t) = tq(x,t). A straightforward application of Lemma 2.2 gives

$$ \begin{array}{@{}rcl@{}} -h_{x}^{-\alpha} \delta_{x}^{\alpha} p(x,t) = \partial_{x}^{\alpha}p(x,t) + \mathcal{O}({h_{x}^{2}}), \end{array} $$

or

$$ \begin{array}{@{}rcl@{}} -h_{x}^{-\alpha} \delta_{x}^{\alpha} \partial_{t} q(x,t) = \partial_{x}^{\alpha}\partial_{t} q(x,t) + \mathcal{O}({h_{x}^{2}}). \end{array} $$
(B.4)

Let t = tn− 1 + 2τ𝜃 in (B.4). Integrating the result from 0 to 1 for 𝜃, we have

$$ \begin{array}{@{}rcl@{}} -h_{x}^{-\alpha} \delta_{x}^{\alpha} {{\int}_{0}^{1}} \partial_{t} q(x,t_{n-1}+2\tau\theta)\mathrm{d}\theta = \partial_{x}^{\alpha} {{\int}_{0}^{1}} \partial_{t} q(x,t_{n-1}+2\theta \tau)\mathrm{d}\theta + {{\int}_{0}^{1}} \mathcal{O}({h_{x}^{2}})\mathrm{d}\theta. \end{array} $$
(B.5)

Notice that

$$ \begin{array}{@{}rcl@{}} {{\int}_{0}^{1}} \partial_{t} q(x,t_{n-1}+2\tau \theta)\mathrm{d}\theta = \triangle_{t} q(x,t_{n}), \end{array} $$

(B.5) becomes

$$ \begin{array}{@{}rcl@{}} -h_{x}^{-\alpha}\delta_{x}^{\alpha} \triangle_{t} q(x,t_{n}) = \partial_{x}^{\alpha} \triangle_{t} q(x,t_{n}) + \mathcal{O}({h_{x}^{2}}), \end{array} $$

which implies (B.3). □

Next, we derive the local truncation errors \(R_{ij}^{n}\) in (3.8) and \(\triangle _{t} R_{ij}^{n}\) in (3.9). Denote

$$ \begin{array}{@{}rcl@{}} & (R^{(1)})_{ij}^{n} = \frac{\tau^{2}}{4} {{\int}_{0}^{1}}\left[\partial_{ttt}u(x_{i},y_{j},t_{n}+s\tau)+ \partial_{ttt}u(x_{i},y_{j},t_{n}-s\tau)\right](1-s)^{2}ds,\\ & (R^{(2)})_{ij}^{n} = \frac{\tau^{2}}{2} {{\int}_{0}^{1}}\left[\partial_{tt}u(x_{i},y_{j},t_{n}+s\tau)+ \partial_{tt}u(x_{i},y_{j},t_{n}-s\tau)\right](1-s)ds. \end{array} $$

Using (B.1) and (B.2), we have

$$ \begin{array}{@{}rcl@{}} &&\triangle_{t} U_{ij}^{n} - \partial_{t} u(x_{i},y_{j},t_{n}) = (R^{(1)})_{ij}^{n}, \end{array} $$
(B.6)
$$ \begin{array}{@{}rcl@{}} &&|U_{ij}^{n}|^{2} U_{ij}^{\bar{n}} - |u(x_{i},y_{j},t_{n})|u(x_{i},y_{j},t_{n}) = |U_{ij}^{n}|^{2} \cdot (R^{(2)})_{ij}^{n}, \end{array} $$
(B.7)

Using (B.2) in Lemmas B.7 and 2.2, we have

$$ \begin{array}{@{}rcl@{}} &&\delta_{x}^{\alpha} U_{ij}^{\bar{n}} - \partial_{x}^{\alpha} u(x_{i},y_{j},t_{n})= \partial_{x}^{\alpha}(R^{(2)})_{ij}^{n} + \mathcal{O}({h_{x}^{2}}), \end{array} $$
(B.8)
$$ \begin{array}{@{}rcl@{}} &&\delta_{y}^{\beta} U_{ij}^{\bar{n}} - \partial_{y}^{\beta} u(x_{i},y_{j},t_{n}) = \partial_{y}^{\beta}(R^{(2)})_{ij}^{n} + \mathcal{O}({h_{y}^{2}}). \end{array} $$
(B.9)

Subtracting (3.5) from (3.13) and noticing (B.6)–(B.9), we have

$$ R_{ij}^{n} = (R^{(1)})_{ij}^{n}-(\nu+\textbf{i}\eta)((\partial_{x}^{\alpha}+\partial_{y}^{\beta})(R^{(2)})_{ij}^{n}) + (\kappa+ \textbf{i} \zeta)|U_{ij}^{n}|^{2} \cdot (R^{(2)})_{ij}^{n} -\gamma (R^{(2)})_{ij}^{n} + \mathcal{O}({h_{x}^{2}} + {h_{y}^{2}}). $$

Thus, the local truncation errors \(R_{ij}^{n}\) in (3.8) holds. Furthermore, we have

$$ \begin{array}{@{}rcl@{}} \triangle_{t}(R^{(1)})_{ij}^{n} &= & \frac{1}{2\tau}((R^{(1)})_{ij}^{n+1}-(R^{(1)})_{ij}^{n-1})\\ &= & \frac{\tau}{8}{{\int}_{0}^{1}} \Big[\partial_{ttt} u(x_{i},y_{j},t_{n+1}+s\tau) + \partial_{ttt} u(x_{i},y_{j},t_{n+1}-s\tau) \Big](1-s)^{2}ds\\ & & -\frac{\tau}{8}{{\int}_{0}^{1}} \Big[\partial_{ttt} u(x_{i},y_{j},t_{n-1}+s\tau) + \partial_{ttt} u(x_{i},y_{j},t_{n-1}-s\tau) \Big](1-s)^{2}ds\\ &= &\frac{\tau}{8} {{\int}_{0}^{1}} \Big[\partial_{ttt} u(x_{i},y_{j},t_{n+1}+s\tau) - \partial_{ttt} u(x_{i},y_{j},t_{n-1}+s\tau)\Big](1-s)^{2}ds\\ & & + \frac{\tau}{8} {{\int}_{0}^{1}} \Big[\partial_{ttt} u(x_{i},y_{j},t_{n+1}-s\tau) -\partial_{ttt} u(x_{i},y_{j},t_{n-1}-s\tau)\Big](1-s)^{2}ds\\ &= & \frac{\tau^{2}}{4}{{\int}_{0}^{1}} {{\int}_{0}^{1}} \Big[\partial_{tttt} u(x_{i},y_{j},t_{n-1} + (2\mu+s)\tau) + \partial_{tttt} u(x_{i},y_{j},t_{n-1} + (2\mu - s)\tau)\Big] (1-s)^{2}d\mu ds. \end{array} $$
(B.10)

Therefore,

$$ | \triangle_{t} (R^{(1)})_{ij}^{n}| \leqslant c\tau^{2}, $$

where c is a positive constant. Similarly, we have

$$ | \triangle_{t} (R^{(2)})_{ij}^{n}| \leqslant c\tau^{2},\quad |\triangle_{t}(U^{n} (R^{2})_{ij}^{n})| \leqslant c\tau^{2}. $$

Combining (B.3) in Lemma B.8 and (B.10), we have

$$ | \triangle_{t} (\partial_{x}^{\alpha}(R^{(2)})_{ij}^{n})| = \mathcal{O}(\tau^{2}+{h_{x}^{2}}),\quad | \triangle_{t} (\partial_{y}^{\beta}(R^{2})_{ij}^{n})| = \mathcal{O}(\tau^{2}+{h_{y}^{2}}). $$

Thus, the local truncation errors \(\triangle _{t} R_{ij}^{n}\) in (3.9) holds.

Appendix: C

With the help of Lemma 3.4 and (3.42), the seven terms in (3.41) can be bounded, respectively, as follows

$$ \begin{array}{@{}rcl@{}} \|J_{1}\|&=& \|\triangle_{t}(U^{k})^{*}e^{\bar{k}}U^{\hat{k}}+\triangle_{t}e^{k} (U^{\bar{k}})^{*}U^{\hat{k}}+\triangle_{t}U^{\bar{k}}(U^{\bar{k}})^{*}e^{\bar{k}}\| \\ &\leqslant& \|u_{t}\|_{{\infty}}\cdot\|u\|_{{\infty}}\cdot\|e^{\bar{k}}\|+\|u\|^{2}_{{\infty}}\cdot\|\triangle_{t}e^{k}\| +\|u_{t}\|_{{\infty}}\cdot\|u\|_{{\infty}}\cdot\|e^{\bar{k}}\|\\ &\leqslant& c_{7}(\|e^{k+1}\|+\|e^{k-1}\|+\|R^{k}\|+\|p^{k}\| +\|(\delta_{x}^{\alpha}+\delta_{y}^{\beta})e^{k+1}\|+\|(\delta_{x}^{\alpha}+\delta_{y}^{\beta})e^{k-1}\|), \end{array} $$
$$ \begin{array}{@{}rcl@{}} \|J_{2}\|&=& \|\triangle_{t}U^{k} U^{\hat{n}}(e^{\bar{k}})^{*}+\triangle_{t}(e^{k})^{*} U^{\bar{k}}U^{\hat{k}}+\triangle_{t}U^{\bar{k}}U^{\bar{k}}(e^{\bar{k}})^{*}\| \\ &\leqslant& \|u_{t}\|_{{\infty}}\cdot\|u\|_{{\infty}}\cdot\|e^{\bar{k}}\|+\|u\|^{2}_{{\infty}}\cdot\|\triangle_{t}e^{k}\| +\|u_{t}\|_{{\infty}}\cdot\|u\|_{{\infty}}\cdot\|e^{\bar{k}}\| \\ &\leqslant& c_{7}(\|e^{k+1}\|+\|e^{k-1}\|+\|R^{k}\|+\|p^{k}\| +\|(\delta_{x}^{\alpha}+\delta_{y}^{\beta})e^{k+1}\|+\|(\delta_{x}^{\alpha}+\delta_{y}^{\beta})e^{k-1}\|), \end{array} $$
$$ \begin{array}{@{}rcl@{}} \|J_{3}\|&=& \|\triangle_{t}U^{k} (U^{k})^{*}e^{\hat{k}}+\triangle_{t}(U^{k})^{*} U^{\bar{k}}e^{\hat{k}} +U^{\bar{k}}(U^{\bar{k}})^{*}\triangle_{t}e^{\bar{k}}\| \\ &\leqslant& \|u_{t}\|_{{\infty}}\cdot\|u\|_{{\infty}}\cdot\|e^{\hat{k}}\| +\|u_{t}\|_{{\infty}}\cdot\|u\|_{{\infty}}\cdot\|e^{\hat{k}}\| +\|u\|^{2}_{{\infty}}\cdot\|\triangle_{t}e^{\bar{k}}\| \\ &\leqslant& c_{7}(\|e^{k+2}\|+\|e^{k}\|+\|e^{k-2}\| +\|R^{k+1}\|+\|R^{k-1}\| \\ && +\|p^{k+1}\|+\|p^{k-1}\| +\|(\delta_{x}^{\alpha}+\delta_{y}^{\beta})e^{k+2}\| +\|(\delta_{x}^{\alpha}+\delta_{y}^{\beta})e^{k}\| +\|(\delta_{x}^{\alpha}+\delta_{y}^{\beta})e^{k-2}\|), \end{array} $$
$$ \begin{array}{@{}rcl@{}} \|J_{4}\|&=& \|\triangle_{t}U^{k} (e^{\bar{k}})^{*}e^{\hat{k}}+\triangle_{t}(e^{k})^{*} U^{\bar{k}}e^{\hat{k}} +U^{\bar{k}}(e^{\bar{k}})^{*}\triangle_{t}e^{\bar{k}}\|\\ &\leqslant& \|u_{t}\|_{{\infty}}\cdot\|e^{\bar{k}} \|\cdot\|e^{\hat{k}}\| +\|u\|_{{\infty}}\cdot\|e^{\hat{k}}\|\cdot\|\triangle_{t}e^{k}\| +\|u\|_{{\infty}}\cdot\|e^{\bar{k}}\|\cdot\|\triangle_{t}e^{\bar{k}}\| \\ &\leqslant& c_{7}(\|e^{\hat{k}}\|+\|\triangle_{t}e^{k}\|+\|\triangle_{t}e^{\bar{k}}\|) \\ &\leqslant& c_{7}(\|e^{k+2}\|+\|e^{k+1}\|+\|e^{k}\|+\|e^{k-1}\|+\|e^{k-2}\| \\ && +\|R^{k+1}\|+\|R^{k}\|+\|R^{k-1}\|+\|p^{k+1}\|+\|p^{k}\|+\|p^{k-1}\| \\ && +\|(\delta_{x}^{\alpha}+\delta_{y}^{\beta})e^{k+2}\| +\|(\delta_{x}^{\alpha}+\delta_{y}^{\beta})e^{k+1}\| +\|(\delta_{x}^{\alpha}+\delta_{y}^{\beta})e^{k}\|\\ && +\|(\delta_{x}^{\alpha}+\delta_{y}^{\beta})e^{k-1}\| +\|(\delta_{x}^{\alpha}+\delta_{y}^{\beta})e^{k-2}\|), \end{array} $$
$$ \begin{array}{@{}rcl@{}} \|J_{5}\|&=& \|\triangle_{t}(U^{k})^{*}e^{\bar{k}}e^{\hat{k}}+\triangle_{t}e^{k} (U^{\bar{k}})^{*}e^{\hat{k}} +(U^{\bar{k}})^{*}e^{\bar{k}}\triangle_{t}e^{\bar{k}}\|\\ &\leqslant& \|u_{t}\|_{{\infty}}\cdot\|e^{\bar{k}}\|\cdot\|e^{\hat{k}}\| +\|u\|_{{\infty}}\cdot\|e^{\hat{k}}\|\cdot\|\triangle_{t}e^{k}\| +\|u\|_{{\infty}}\cdot\|e^{\bar{k}}\|\cdot\|\triangle_{t}e^{\bar{k}}\| \\ &\leqslant& c_{7}(\|e^{\hat{k}}\|+\|\triangle_{t}e^{k}\|+\|\triangle_{t}e^{\bar{k}}\|) \\ &\leqslant& c_{7}(\|e^{k+2}\|+\|e^{k+1}\|+\|e^{k}\|+\|e^{k-1}\|+\|e^{k-2}\| \\ && +\|R^{k+1}\|+\|R^{k}\|+\|R^{k-1}\| +\|p^{k+1}\|+\|p^{k}\|+\|p^{k-1}\| \\ && +\|(\delta_{x}^{\alpha}+\delta_{y}^{\beta})e^{k+2}\| +\|(\delta_{x}^{\alpha}+\delta_{y}^{\beta})e^{k+1}\| +\|(\delta_{x}^{\alpha}+\delta_{y}^{\beta})e^{k}\|\\ && +\|(\delta_{x}^{\alpha}+\delta_{y}^{\beta})e^{k-1}\| +\|(\delta_{x}^{\alpha}+\delta_{y}^{\beta})e^{k-2}\|), \end{array} $$
$$ \begin{array}{@{}rcl@{}} \|J_{6}\|&=& \|\triangle_{t}e^{k} (e^{\bar{k}})^{*}U^{\hat{k}}+\triangle_{t}(e^{k})^{*} e^{\bar{k}}U^{\hat{k}} +\triangle_{t}U^{\bar{k}}e^{\bar{k}}(e^{\bar{k}})^{*}\| \\ &\leqslant& 2\|u\|_{{\infty}}\cdot\|e^{\bar{k}}\|\cdot\|\triangle_{t}e^{{k}}\| +\frac{1}{2}\|u_{t}\|_{{\infty}}\cdot\|e^{\bar{k}}\|\cdot(\|e^{k+1}\|+\|e^{k-1}\|) \\ &\leqslant& c_{7}(\|e^{k+1}\|+\|e^{k-1}\|+\|\triangle_{t}e^{k}\|) \\ &\leqslant& c_{7}(\|e^{k+1}\|+\|e^{k-1}\|+\|R^{k}\|+\|p^{k}\| +\|(\delta_{x}^{\alpha}+\delta_{y}^{\beta})e^{k+1}\| +\|(\delta_{x}^{\alpha}+\delta_{y}^{\beta})e^{k-1}\|), \end{array} $$
$$ \begin{array}{@{}rcl@{}} \|J_{7}\|&=& \|\triangle_{t}e^{k} (e^{\bar{k}})^{*}e^{\hat{k}}+\triangle_{t}(e^{k})^{*} e^{\bar{k}}e^{\hat{k}} +e^{\bar{k}}(e^{\bar{k}})^{*}\triangle_{t}e^{\bar{k}}\| \\ &\leqslant& 2\|e^{\bar{k}}\|\cdot\|e^{\hat{k}}\|\cdot\|\triangle_{t}e^{k}\| +\|e^{\bar{k}}\|^{2}\cdot\|\triangle_{t}e^{\bar{k}}\| \leqslant c_{7}(\|\triangle_{t}e^{k}\|+\|\triangle_{t}e^{\bar{k}}\|) \\ &\leqslant& c_{7}(\|e^{k+2}\|+\|e^{k+1}\|+\|e^{k}\|+\|e^{k-1}\|+\|e^{k-2}\|+\|R^{k+1}\|+\|R^{k}\|+\|R^{k-1}\| \\ && +\|p^{k+1}\|+\|p^{k}\|+\|p^{k-1}\|+\|(\delta_{x}^{\alpha}+\delta_{y}^{\beta})e^{k+2}\| +\|(\delta_{x}^{\alpha}+\delta_{y}^{\beta})e^{k+1}\| \\ && +\|(\delta_{x}^{\alpha}+\delta_{y}^{\beta})e^{k}\| +\|(\delta_{x}^{\alpha}+\delta_{y}^{\beta})e^{k-1}\| +\|(\delta_{x}^{\alpha}+\delta_{y}^{\beta})e^{k-2}\|). \end{array} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Hesthaven, J.S., Sun, Zz. et al. Pointwise error estimate in difference setting for the two-dimensional nonlinear fractional complex Ginzburg-Landau equation. Adv Comput Math 47, 35 (2021). https://doi.org/10.1007/s10444-021-09862-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-021-09862-x

Keywords

Mathematics Subject Classification (2010)

Navigation