Skip to main content
Log in

A recovery-based linear C0 finite element method for a fourth-order singularly perturbed Monge-Ampère equation

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

This paper develops a new recovery-based linear C0 finite element method for approximating the weak solution of a fourth-order singularly perturbed Monge-Ampère equation, which is known as the vanishing moment approximation of the Monge-Ampère equation. The proposed method uses a gradient recovery technique to define a discrete Laplacian for a given linear C0 finite element function (offline), the discrete Laplacian is then employed to discretize the biharmonic operator appeared in the equation. It is proved that the proposed C0 linear finite element method has a unique solution using a fixed point argument and the corresponding error estimates are derived in various norms. Numerical experiments are also provided to verify the theoretical error estimates and to demonstrate the efficiency of the proposed recovery-based linear C0 finite element method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benamou, J.-D., Brenier, Y.: A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math. 84(3), 375–393 (2000)

    Article  MathSciNet  Google Scholar 

  2. Bramble, J.H., Pasciak, J.E., Schatz, A.H.: The construction of preconditioners for elliptic problems by substructuring. I. Math. Comp. 47(175), 103–134 (1986)

    Article  MathSciNet  Google Scholar 

  3. Brenner, S., Kawecki, E.: Adaptive C0 interior penalty methods for Hamilton-Jacobi-Bellman equations with Cordes coefficients, arXiv:1911.05407 (2019)

  4. Brenner, S., Neilan, M.: Finite element approximations of the three dimensional monge-ampère equation. ESAIM. Math. Model. Numer. Anal. 46(5), 979–1001 (2012)

    Article  MathSciNet  Google Scholar 

  5. Brenner, S., Neilan, M.: A \(\mathcal {c}^{0}\) interior penalty method for a fourth order elliptic singular perturbation problem. SIAM J. Numer. Anal. 49(2), 869–892 (2011)

    Article  MathSciNet  Google Scholar 

  6. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 3rd edn. Springer, New York (2008)

    Book  Google Scholar 

  7. Chen, H., Zhang, Z., Zou, Q.: A recovery based linear finite element method for 1D bi-harmonic problems. J. Scient. Comput. 68(1), 375–394 (2016)

    Article  MathSciNet  Google Scholar 

  8. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. SIAM, Philadelphia (2002)

    Book  Google Scholar 

  9. Eymard, R., Herbin, R., Rhoudaf, M.: Approximation of the biharmonic problem using p1 finite elements. J. Numer. Math. 19(1), 1–26 (2011)

    Article  MathSciNet  Google Scholar 

  10. Feng, X., Glowinski, R., Neilan, M.: Recent developments in numerical methods for fully nonlinear second-order partial differential equations. SIAM Rev. 55(2), 205–267 (2013)

    Article  MathSciNet  Google Scholar 

  11. Feng, X., Jensen, M.: Convergent semi-Lagrangian methods for the monge-ampère equation on unstructured grids. SIAM J. Numer. Anal. 55, 691–712 (2017)

    Article  MathSciNet  Google Scholar 

  12. Feng, X., Lewis, T., Neilan, M.: Discontinuous Galerkin finite element differential calculus and applications to numerical solutions of linear and nonlinear partial differential equations. J. Comput. Appl. Math. 299, 68–91 (2016)

    Article  MathSciNet  Google Scholar 

  13. Feng, X., Lewis, T.: Nonstandard local discontinuous Galerkin methods for fully nonlinear second order elliptic and parabolic equations in high dimensions. J. Scient. Comput. 77(3), 1534–1565 (2018)

    Article  MathSciNet  Google Scholar 

  14. Feng, X., Neilan, M.: Convergence analysis of a fourth order perturbation of the radially symmetric monge-ampère equation. Appli. Anal. 93(8), 626–1646 (2014)

    Article  Google Scholar 

  15. Feng, X., Neilan, M.: Mixed finite element methods for the fully nonlinear monge-ampère equation based on the vanishing moment method. SIAM J. Numer. Anal. 47, 1226–1250 (2009)

    Article  MathSciNet  Google Scholar 

  16. Feng, X., Neilan, M.: Vanishing moment method and moment solutions for fully nonlinear second order partial differential equations. J. Scient. Comput. 38(1), 74–98 (2008)

    Article  MathSciNet  Google Scholar 

  17. Feng, X., Neilan, M.: Analysis of Galerkin methods for the fully nonlinear monge-ampère equation. J. Scient. Comput. 47, 303–327 (2011)

    Article  Google Scholar 

  18. Figalli, A.: The monge-ampère Equation and its Applications, zürich Lectures in Advanced Mathematics, European Mathematical Society (EMS) Zurich (2017)

  19. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order Classics in Mathematics. Springer, Berlin (2001)

    Book  Google Scholar 

  20. Guo, H., Yang, X.: Polynomial preserving recovery for high frequency wave propagation. J. Scient. Comput. 71, 594–614 (2017)

    Article  MathSciNet  Google Scholar 

  21. Guo, H., Zhang, Z., Zhao, R., Zou, Q.: Polynomial preserving recovery on boundary. J. Comput. Appl. Math. 307, 119–133 (2016)

    Article  MathSciNet  Google Scholar 

  22. Guo, H., Zhang, Z., Zou, Q.: A c0 linear finite element method for biharmonic problems. J. Scient. Comput. 74, 1397–1422 (2018)

    Article  Google Scholar 

  23. Gutiérrez, C.E.: The Monge-Ampère Equation, Birkhäuser Boston, Inc., Boston, MA. Progress in Nonlinear Differential Equations and their Applications (2001)

  24. Kawecki, E., Lakkis, O., Pryer, T.: A finite element method for the Monge-Ampère equation with transport boundary conditions, arXiv[math]:arXiv:1807.03535 (2018)

  25. Lakkis, O., Pryer, T.: A finite element method for second order nonvariational elliptic problems. SIAM J. Scient. Comput. 33(2), 786–801 (2011)

    Article  MathSciNet  Google Scholar 

  26. Mu, L., Wang, J., Ye, X.: Weak Galerkin finite element methods for the biharmonic equation on polytopal meshes. Numer Methods PDEs 30 (3), 1003–1029 (2014)

    Article  MathSciNet  Google Scholar 

  27. Neilan, M.: Numerical Methods for Second Order Fully Nonlinear Partial Differential Equations, PhD Dissertation, The University of Tennessee, Knoxville (2009)

  28. Neilan, M.: Nonconforming finite element methods for the fully nonlinear monge-ampère equation. Numer. Math. 115, 371–390 (2010)

    Article  MathSciNet  Google Scholar 

  29. Neilan, M.: Finite element methods for fully nonlinear second order PDEs based on a discrete Hessian with applications to the monge-ampère equation. J. Comp. Appl. Math. 263, 351–369 (2014)

    Article  Google Scholar 

  30. Neilan, M., Salgado, A.J., Zhang, W.: Numerical analysis of strongly nonlinear PDEs. Acta Numerica 26, 137–303 (2017)

    Article  MathSciNet  Google Scholar 

  31. Neilan, M., Wu, M.: Discrete Miranda-Talenti estimates and applications to linear and nonlinear PDEs. J. Comput. Appl. Math. 356, 358–376 (2019)

    Article  MathSciNet  Google Scholar 

  32. Okabe, A., Boots, B., Sugihara, K.: Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. Wiley, New York (1992)

    MATH  Google Scholar 

  33. Smears, I., Süli, E.: Discontinuous Galerkin finite element approximation of Hamilton-Jacobi-Bellman equations with Cordes coefficients. SIAM J. Numer. Anal. 52(2), 993–1016 (2014)

    Article  MathSciNet  Google Scholar 

  34. Stojanovic, S.D.: Risk premium and fair option prices under stochastic volatility: the HARA solution. C. R. Math. Acad. Sci. Paris 340(7), 551–556 (2005)

    Article  MathSciNet  Google Scholar 

  35. Trudinger, N.S., Wang, X.-J.: The affine Plateau problem. J. Amer. Math. Soc. 18(2), 253–289 (2005)

    Article  MathSciNet  Google Scholar 

  36. Villani, C.: Topics in Optimal Transportation, vol. 58 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI (2003)

  37. Wang, M., Xu, J.: The Morley element for fourth order elliptic equations in any dimensions. Numer. Math. 103, 155–169 (2006)

    Article  MathSciNet  Google Scholar 

  38. Xu, J., Zhang, Z.: Analysis of recovery type a posteriori error estimators for mildly structured grids. Math. Comp. 73(247), 1139–1152 (2003)

    Article  MathSciNet  Google Scholar 

  39. Zhang, Z., Naga, A.: A new finite element gradient recovery method: Superconvergence property. SIAM J. Scient. Comput. 26, 1192–1213 (2005)

    Article  MathSciNet  Google Scholar 

  40. Zhang, Z., Naga, A.: The polynomial-preserving reconvery for higher order finite element methods in 2D and 3D. Discrete Cont. Dynam. Syst. B 5(30), 769–798 (2005)

    MATH  Google Scholar 

  41. Zienkiewicz, O.C., Zhu, J.Z.: The superconvergence patch recovery and a posteriori error estimates, Part 1: the recovery technique. Internat J. Numer. Methods Engrg. 33, 1331–1364 (1992)

    Article  MathSciNet  Google Scholar 

Download references

Funding

The work of the first author was partially supported by the National Natural Science Foundation of China (No. 11871410), the Natural Science Foundation of Fujian Province of China (No. 2018J01004), and the Fundamental Research Funds for the Central Universities (No. 20720180001). The work of the second author was partially supported by the United States National Science Foundation grants DMS-2012414 and DMS-1620168. The work of the third author was partially supported by the National Natural Science Foundation of China (No. 11871092 and U1930402).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobing Feng.

Additional information

Communicated by: Ilaria Perugia

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Feng, X. & Zhang, Z. A recovery-based linear C0 finite element method for a fourth-order singularly perturbed Monge-Ampère equation. Adv Comput Math 47, 21 (2021). https://doi.org/10.1007/s10444-021-09847-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-021-09847-w

Keywords

Mathematics subject classification (2010)

Navigation