Skip to main content
Log in

Analytic regularity and stochastic collocation of high-dimensional Newton iterates

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we introduce concepts from uncertainty quantification (UQ) and numerical analysis for the efficient evaluation of stochastic high-dimensional Newton iterates. In particular, we develop complex analytic regularity theory of the solution with respect to the random variables. This justifies the application of sparse grids for the computation of statistical measures. Convergence rates are derived and are shown to be subexponential or algebraic with respect to the number of realizations of random perturbations. Due to the accuracy of the method, sparse grids are well suited for computing low-probability events with high confidence. We apply our method to the power flow problem. Numerical experiments on the non-trivial, 39-bus New England power system model with large stochastic loads are consistent with the theoretical convergence rates. Moreover, compared with the Monte Carlo method, our approach is at least 1011 times faster for the same accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ablowitz, M.J., Fokas, A.S.: Complex Variables : Introduction and Applications, 2nd edn. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  2. Argyros, I.K.: Convergence and Applications of Newton-Type Iterations. Springer, Berlin (2008)

  3. Babuska, I., Nobile, F., Tempone, R.: A stochastic collocation method for elliptic partial differential equations with random input data. SIAM Rev. 52(2), 317–355 (2010). https://doi.org/10.1137/100786356

    Article  MathSciNet  Google Scholar 

  4. Bäck, J, Nobile, F., Tamellini, L., Tempone, R.: Stochastic Spectral Galerkin and Collocation Methods for PDEs with Random Coefficients: a Numerical Comparison. In: Hesthaven, J.S., Rønquist, E.M. (eds.) Spectral and High Order Methods for Partial Differential Equations, Lecture Notes in Computational Science and Engineering, vol. 76, pp 43–62. Springer, Berlin (2011)

  5. Bank, R.E., Rose, D.J.: Analysis of a multilevel iterative method for nonlinear finite element equations. Math. Comput. 39(160), 453–465 (1982)

    Article  MathSciNet  Google Scholar 

  6. Barthelmann, V., Novak, E., Ritter, K.: High dimensional polynomial interpolation on sparse grids. Adv. Comput. Math. 12, 273–288 (2000)

    Article  MathSciNet  Google Scholar 

  7. Beck, J., Nobile, F., Tamellini, L., Tempone, R.: Convergence of quasi-optimal stochastic Galerkin methods for a class of PDEs with random coefficients. Comput. Math. Appl. 67 (4), 732–751 (2014). https://doi.org/10.1016/j.camwa.2013.03.004, http://www.sciencedirect.com/science/article/pii/S0898122113001569, high-order Finite Element Approximation for Partial Differential Equations

    Article  MathSciNet  Google Scholar 

  8. Bergen, A.R., Vittal, V.: Power systems analysis, 2nd edn. Pearson/Prentice Hall (2000)

  9. Castrillón-Candás, J.E., Nobile, F., Tempone, R.: Analytic regularity and collocation approximation for PDEs with random domain deformations. Comput. Math. Appl. 71(6), 1173–1197 (2016)

    Article  MathSciNet  Google Scholar 

  10. Fiandrino, C.: How can I do a power electric system in circuitikz? tex.stackexchange.com/questions/145197/how-can-i-do-a-power-electric-system-in-circuitikz (2013)

  11. Fishman, G.S.: Monte Carlo : concepts, algorithms, and applications. Springer series in operations research. Springer, Berlin. http://opac.inria.fr/record=b1079070, with 98 illustrations (p. de titre) (1996)

  12. Gerstner, T., Griebel, M.: Dimension-adaptive tensor-product quadrature. Computing 71(1), 65–87 (2003)

    Article  MathSciNet  Google Scholar 

  13. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  14. Gunning, R., Rossi, H.: Analytic Functions of Several Complex Variables. American Mathematical Society (1965)

  15. Hockenberry, J.R., Lesieutre, B.C.: Evaluation of uncertainty in dynamic simulations of power system models: The probabilistic collocation method. IEEE Transactions On Power Systems 19(3) (2004)

  16. Holst, M.: The Poisson-Boltzmann Equation: Analysis and Multilevel Numerical Solution. 1St Edn, Applied Mathematics and CRPC. California Institute of Technology (1994)

  17. J Tang, F.N., Ponci, F., Monti, A.: Dimension-adaptive sparse grid interpolation for uncertainty quantification in modern power systems: Probabilistic power flow. IEEE Transactions On Power Systems 19 (2015)

  18. Klimke, A.: Sparse Grid Interpolation Toolbox – user’s guide. Tech. Rep. IANS report 2007/017, University of Stuttgart (2007)

  19. Klimke, A., Wohlmuth, B.: Algorithm 847: spinterp: Piecewise multilinear hierarchical sparse grid interpolation in MATLAB. ACM Trans. Math. Softw. 31(4) (2005)

  20. Krantz, S.G.: Function Theory of Several Complex Variables. AMS Chelsea Publishing, Providence (1992)

  21. Murillo-Sánchez, C.E., Zimmerman, R.D., Anderson, C.L., Thomas, R.J.: Secure planning and operations of systems with stochastic sources, energy storage, and active demand. IEEE Trans. Smart Grid 4(4), 2220–2229 (2013)

    Article  Google Scholar 

  22. National Academies of Sciences, Engineering, and Medicine. Analytic Research Foundations for the Next-Generation Electric Grid. The National Academies Press, Washington (2016). https://doi.org/10.17226/21919

  23. Nobile, F., Tempone, R.: Analysis and implementation issues for the numerical approximation of parabolic equations with random coefficients. Int. J. Numer. Methods Eng. 80(6-7), 979–1006 (2009). https://doi.org/10.1002/nme.2656

    Article  MathSciNet  Google Scholar 

  24. Nobile, F., Tempone, R., Webster, C.: An anisotropic sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 46(5), 2411–2442 (2008a). https://doi.org/10.1137/070680540

  25. Nobile, F., Tempone, R., Webster, C.: A sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 46(5), 2309–2345 (2008b). https://doi.org/10.1137/060663660

  26. Nobile, F., Tamellini, L., Tempone, R.: Convergence of quasi-optimal sparse-grid approximation of Hilbert-space-valued functions: application to random elliptic PDEs. Numer. Math. 134(2), 343–388 (2016). https://doi.org/10.1007/s00211-015-0773-y

    Article  MathSciNet  Google Scholar 

  27. Prempraneerach, P., Hover, F., Triantafyllou, M., Karniadakis, G.: Uncertainty quantification in simulations of power systems: Multi-element polynomial chaos methods. Reliab. Eng. Syst. Safety 95 (6), 632 – 646 (2010). https://doi.org/10.1016/j.ress.2010.01.012, http://www.sciencedirect.com/science/article/pii/S0951832010000281

    Article  Google Scholar 

  28. Roald, L., Oldewurtel, F., Krause, T., Andersson, G.: Analytical reformulation of security constrained optimal power flow with probabilistic constraints. In: 2013 IEEE Grenoble Conference, pp 1–6. https://doi.org/10.1109/PTC.2013.6652224(2013)

  29. Smolyak, S.: Quadrature and interpolation formulas for tensor products of certain classes of functions. Soviet Math. Doklady 4, 240–243 (1963)

    MATH  Google Scholar 

  30. Tamellini, L., Nobile, F.: Sparse grids matlab kit. http://csqi.epfl.ch/page-107231-en.html (Unknown Month 2009)

  31. Trefethen, L.N.: Approximation Theory and Approximation Practice (Other Titles in Applied Mathematics). Society for Industrial and Applied Mathematics, Philadelphia (2012)

  32. Zimmerman, R.D., Murillo-Sánchez, C.E., Thomas, R.J.: Matpower: Steady-state operations, planning, and analysis tools for power systems research and education. IEEE Trans. Power Syst. 26(1), 12–19 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio E. Castrillón-Candás.

Additional information

Communicated by: Anthony Nouy

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This material is based upon work supported by the National Science Foundation under Grant No. 1736392. Research reported in this technical report was supported in part by the National Institute of General Medical Sciences (NIGMS) of the National Institutes of Health under award number 1R01GM131409-01.

Appendix: A Analyticity regions for random generators and loads

Appendix: A Analyticity regions for random generators and loads

We examine the case of random generators and loads to obtain convergence rates of the sparse grid. The task is to synthesize an analyticity region Ψ for the extended Newton iteration to converge. We only check that the conditions of Theorem 7 are satisfied and assume that 6 is satisfied. A full analysis will be done in a future work. Thus, we synthesize the region of analyticity for Ψ by checking that:

$$ \| \mathbf{G}(\boldsymbol{\alpha}^{0},\mathbf{g}) \| < \frac{\delta_{e}}{\varkappa_{e}} - \frac{\delta}{\varkappa}, $$

whenever g ∈Ψ. Without loss of generality, assume that the first τm buses contain stochastic power generators (or loads) with active power \(P_{1}({\omega }):= (q_{1} + v_{1,R} + iv_{1,I}) c_{1} + a_{1}, ,\dots ,P_{\tau }({\omega }):= (q_{\tau } + v_{q,R} + iv_{q,I})c_{\tau } + a_{\tau }\) and reactive power \(Q_{1}(\omega ):=(q_{{\tau }+1} + v_{\tau +1,R} + iv_{{\tau }+1,I}) c_{{\tau }+1} + a_{\tau +1},\dots ,\)Qτ(ω) := (qN + vN,R + ivN,I)cN + aN. The random vector q ∈Γ is assumed to be stochastic with joint distribution ρ(q) and for all \(k=1,\dots , N\)vk := vk,R + ivk,I is the complex extension of each qk ∈Γk. Furthermore, for \(k = 1, \dots , N\), the variables \(a_{k} \in \mathbb {R}\) and \(c_{k} \in \mathbb {R}^{+}\), where ak + ck and ak indicate the maximum and minimum range of the stochastic perturbation. Thus, we have:

$$ \mathbf{f}(\boldsymbol{\alpha}_{0}) := \left[ \begin{array}{c} P_{1}(\mathbf{x}_{0}) - P_{1}({\omega})\\ {\vdots}\\ P_{\tau}(\mathbf{x}_{0}) - P_{\tau}({\omega})\\ P_{\tau+1}(\mathbf{x}_{0}) - P_{\tau+1}\\ {\vdots}\\ \displaystyle\frac{P_{m}(\mathbf{x}_{0}) - P_{m}} {Q_{1}(\mathbf{x}_{0}) - Q_{1}({\omega})}\\ {\vdots}\\ Q_{\tau}(\mathbf{x}_{0}) - Q_{\tau}({\omega})\\ Q_{\tau+1}(\mathbf{x}_{0}) - Q_{\tau+1}\\ {\vdots}\\ Q_{m}(\mathbf{x}_{0}) - Q_{m} \end{array} \right], $$
$$ {\text{Re}}{\mathbf{f}(\boldsymbol{\alpha}_{0})} = \left[ \begin{array}{c} P_{1}(\mathbf{x}_{0}) - (q_{1} + v_{1,R})c_{1} + a_{1}\\ {\vdots}\\ P_{\tau}(\mathbf{x}_{0}) - (q_{\tau} + v_{q,R})c_{\tau} + a_{\tau}\\ P_{\tau+1}(\mathbf{x}_{0}) - P_{\tau+1}\\ {\vdots}\\ P_{m}(\mathbf{x}_{0}) - P_{m}\\ Q_{1}(\mathbf{x}_{0}) - (q_{{\tau}+1} + v_{q+1,R})c_{{\tau}+1} + a_{{\tau}+1}\\ {\vdots}\\ Q_{{\tau}}(\mathbf{x}_{0}) - (q_{N} + v_{N,R})c_{N} + a_{N}\\ Q_{{\tau}+1}(\mathbf{x}_{0}) - Q_{\tau+1}\\ {\vdots}\\ Q_{m}(\mathbf{x}_{0}) - Q_{m} \end{array} \right], $$
$$ {\text{Im}}{\mathbf{f}(\boldsymbol{\alpha}_{0})} = -\left[ \begin{array}{ccccccccccccc} v_{1,I}c_{1} & {\dots} & v_{{\tau},I}c_{\tau} & 0 & {\dots} & 0 & | & v_{{\tau}+1,I}c_{{\tau}+1} & {\dots} & v_{N,I}c_{N} & 0 & {\dots} & 0 \end{array} \right]^{T}, $$

and therefore

$$ \mathbf{P}_{P} =- \left[ \begin{array}{c} (v_{1,R} + v_{1,I})c_{1} \\ {\vdots} \\ (v_{{\tau},R} + v_{{\tau},I})c_{{\tau}} \\ 0 \\ \vdots\\ 0 \end{array} \right], \mathbf{P}_{Q} =- \left[ \begin{array}{c} (v_{{\tau}+1,R} + v_{{\tau}+1,I})c_{{\tau}+1} \\ {\vdots} \\ (v_{N,R} + v_{N,I})c_{N} \\ 0 \\ \vdots\\ 0 \end{array} \right], $$

\(\mathbf {P} = \begin {bmatrix} \mathbf {P}_{P} \\ \mathbf {Q}_{Q} \end {bmatrix}\) and thus \(\| \mathbf {G} \|^{2}_{2} = {\sum }_{k=1}^{N} (v_{k,R} + v_{k,I})^{2}{c^{2}_{k}} + {\sum }_{k=1}^{N} v^{2}_{k,I}{c^{2}_{k}}.\) The last equality is due to the integral remainder form of Taylor’s theorem. Let vk,R = vR/ck and vk,I = vI/ck for \(k = 1,\dots , 2N\), where \(v_{R}, v_{I} \in \mathbb {R}\), then for any 𝜖 > 0

$$ \begin{array}{ll} \| \mathbf{G} \|^{2}_{2} & = N{v_{R}^{2}} + 2N{v_{I}^{2}} + 2Nv_{R}v_{I}\\ &\leq {v_{R}^{2}} N(1 + 2 \epsilon) + {v_{I}^{2}}N(2 + \epsilon^{-1}/2) \\ &\leq \left( \frac{\delta_{e}}{\varkappa_{e}} - \frac{\delta}{\varkappa} \right)^{2}. \end{array} $$

The last inequality is obtained by using Cauchy’s inequality. Let \(\gamma _{e} := \frac {\delta _{e}}{\varkappa _{e}} - \frac {\delta }{\varkappa }\);

thus, the inequality:

$$ \frac{{v_{R}^{2}}}{\alpha^{2}} + \frac{{v_{I}^{2}}}{{\upbeta}^{2}} \leq 1, $$
(1)

where \(\alpha ^{2} := \frac {{\gamma _{e}^{2}}}{N(1+2\epsilon )}\) and \({\upbeta }^{2} := \frac {{\gamma _{e}^{2}}}{N(2 + \epsilon ^{-1}/2)}\), forms an elliptical region \({\Sigma } \subset \mathbb {C}\) (see Fig. 7) such that ∥G2γe.

Fig. 7
figure 7

Embedding of Bernstein ellipse \({\mathcal E}_{\sigma }\) in the domain Φ

Consider the region Φ := {g = q + vR + ivI|q ∈ [− 1, 1], (vR,vI) ∈Σ} where ∥G2γe is satisfied. Suppose that we want to embed a Bernstein ellipse \({\mathcal E}_{\sigma }\) in Φ. To achieve this, consider the foci points of \({\mathcal E}_{\sigma }\) at − 1 and 1. It is not hard to show that \(\frac {e^{\sigma } - e^{-\sigma }}{2} \geq \frac {e^{\sigma } + e^{-\sigma }}{2} - 1\) for σ > 0. At the foci point ± 1, trace the ellipse from Eq. 1 and set \(\upbeta = \frac {e^{\sigma } - e^{-\sigma }}{2}\) (see Fig. 7).

Choose an 𝜖 > 0 such that \({\mathcal E}_{\sigma }\) is embedded in Φ by solving the following equation:

$$ \frac{\alpha}{\upbeta} = \sqrt{\frac{ 4 + \epsilon^{-1}}{2(1 + 2 \epsilon)}} $$

leading to

$$ \epsilon = \frac{(c^{2} + 4)^{\frac{1}{2}} - c + 2}{4c} > 0, $$

where c := (α/β)2 > 0. Pick 𝜖 > 0 such that c = (α/β)2 = 1. Pick σ > 0 such that \(\frac {e^{\sigma } - e^{-\sigma }}{2} = \upbeta \). This leads to

$$ \sigma = \log(\upbeta + ({\upbeta}^{2} + 1)^{\frac{1}{2}}) $$

and \(\frac {e^{\sigma } + e^{-\sigma }}{2} - 1 \leq \upbeta = \alpha \). The region bounded by the ellipse \({\mathcal E}_{\sigma }\) is therefore embedded in Φ.

A polyellipse in CN can now be constructed such that ∥G2γe. Recall that vk,R = vR/ck, and vk,I = vI/ck for \(k = 1,\dots , N\) and consider the regions Ψk := {g = q + vk,R + ivk,I|q ∈ [− 1, 1], (vR,vI) ∈Σ}. By following the procedure for embedding \({\mathcal E}_{\sigma }\) in Φ for each \(k = 1,\dots ,N\), an ellipse \({\mathcal E}_{\varrho _{k}}\) can be embedded in Ψk with:

$$ \varrho_{k} := \log\left( \frac{\upbeta}{c_{k}} + \left( \frac{{\upbeta}^{2}}{{c_{k}^{2}}} + 1 \right)^{\frac{1}{2}}\right). $$

The polyellipse \({\mathcal E}_{\varrho _{1},\dots ,\varrho _{N}} := {\mathcal E}_{\varrho _{1}} \times {\dots } \times {\mathcal E}_{\varrho _{N}}\) is embedded in \({\Psi }_{1} \times {\dots } \times {\Psi }_{N}\). Thus for any \(\text {g} \in {\mathcal E}_{\varrho _{1},\dots ,\varrho _{N}}\)

$$ \| \mathbf{G}(\boldsymbol{\alpha}_{0},\mathbf{g}) \| \leq \gamma_{e}. $$

With the region bounded by the polyellipse \({\mathcal E}_{\varrho _{1},\dots ,\varrho _{N}}\) the convergence rate of the sparse grid can be estimated with respect to the magnitude of the coefficients ck, for \(k = 1, \dots , N\).

Remark 1

From this analysis we observe that the size of the analyticity region of Ψ depends directly on

$$ \upbeta = \sqrt{\frac{{\gamma_{e}^{2}}}{N(2 + \epsilon^{-1}/2)}}, $$

where \(\epsilon = \frac {\sqrt {5} + 1}{4}\). The size of the region Ψ decays as square root with respect to the number of stochastic dimensions N, thus reducing the convergence rate of the sparse grid.

Example 1

Consider the 3-bus simple power system with stochastic load and generator based on Example 10.6 in [8] and Fig. ??. Bus 1 is the slack bus with 1 0. Bus 2 voltage is fixed as V2 = 1.05 p.u. and contains a stochastic generator PE = q1c1 + a1, where q1 ∈ [− 1, 1] with a1 = 0.6661 p.u. and \(c_{1} \in \mathbb {R}^{+}\); i.e., the generator is random within the range 0.6661 ± c1. Bus 3 contains the random load with PL + iQL = (q2c2 + a2) + i(q3c3 + a3), where q2,q3 ∈ [− 1, 1] with a2 = 2.8653 p.u., a3 = 1.2244 p.u. and \(c_{2},c_{3} \in \mathbb {R}^{+}\), i.e., the load is random within the range 2.8653 ± c2 of the active power and 1.2244 ± c3 for the reactive power. The admittance matrix to the network is:

$$ \mathbf{Y}_{bus} := i \left( \begin{array}{ccc} -20 & 10 & 10 \\ 10 & -20 & 10 \\ 10 & 10 & -20 \end{array}\right). $$

The vector of unknowns is x := [𝜃2,𝜃3,V3]T and f(x,q) = [P1(x) − q1c1a1,P2(x) − q2c2a2,P3(x) − q3c3a3]T for all q ∈Γ and therefore f(α,g) = [P1(α)−(q1+v1,R+iv1,I)c1+a1,P2(α)−(q2+v2,R+iv2,I)c2+a3,P3(α)−(q3+v3,R+iv3,I)c3+a3]T for all g ∈Ψ. With q = 0 the Newton algorithm converges in 20 iterations to x = [− 5.2361 × 10− 2,− 1.7445 × 10− 1, 0.9500]T with 10− 15 tolerance. Furthermore,

$$ \mathbf{J}(\mathbf{x}^{*}) = \left( \begin{array}{ccc} 0.06542 &~ 0.03384 &~ 0.00135\\ 0.03384 &~ 0.07112 &~ 0.01127\\ 0.00128 &~ 0.01069 &~ 0.06549\\ \end{array}\right) \text{and} \varkappa = \| \mathbf{J}^{-1}(\mathbf{x}^{*}) \|_{2} = 0.1043. $$

Since there is no direct stochastic components (q1,q2,q3) in the Jacobian matrix, then

$$ \begin{array}{@{}rcl@{}} \begin{array}{llll} \mathbf{J}(\mathbf{x}) &= \left[ \begin{array}{ccccc} 10.5 (cos(\theta_{2}) + V_{3} cos(\theta_{2} - \theta_{3})) & -10.5 V_{3} cos(\theta_{2} - \theta_{3}) \\ -10.5 V_{3} cos(\theta_{3} - \theta_{2}) & 10 V_{3} cos(\theta_{3}) + 10.5 V_{3} cos(\theta_{3} - \theta_{2}) \\ -10.5 V_{3} sin(\theta_{3} - \theta_{2}) & 10.5 V_{3} (sin(\theta_{3}) + sin(\theta_{3} - \theta_{2})) \end{array} \right. \\ & \left. \begin{array}{cccccc} 10.5 sin(\theta_{2} - \theta_{3}) \\ 10.5 sin(\theta_{3}) + 10.5 sin(\theta_{3} - \theta_{2}) \\ -(10 cos(\theta_{3}) +10.5 cos(\theta_{3} - \theta_{2}) - 39.96{V_{3}^{2}}) \end{array}\right]. \end{array} \end{array} $$

From the mean value theorem, we have that:

$$ \lambda = \sqrt{ {\sum}_{k,l=1}^{m} \| \nabla \mathbf{J}_{k,l}(\mathbf{x}) \|_{L^{\infty}(D \times {\Gamma})} } < \infty, $$

where D is a bounded set, Jk,l(x) is the kth row and lth column entry of the Jacobian matrix J(x).

With the initial condition \(\mathbf {x}_{0} = \mathbf {x}^{*}(\mathbf {0})\), for small enough coefficients c1,c2, and c3 we have that:

  1. (i)

    \(\| \mathbf {J}^{-1}(\mathbf {x}_{0}) \| \leq \varkappa = 0.1043\).

  2. (ii)

    Furthermore, since f is continuous and f(x0,0) = 0, then \(\| \mathbf {J}^{-1}(\mathbf {x}_{0}) \mathbf {f}(\mathbf {x}_{0},\mathbf {q})\| \leq \delta < \infty \), where δ is arbitrarily small.

  3. (iii)

    It follows that h < 1 for all \(\mathbf {x} \in \overline {B(\mathbf {x}^{*}(0),t^{*})} \subset D\) where \(t^{*} = \frac {2}{h}(1 - \sqrt {1 - h})\delta \).

  4. v

    From the Newton–Kantorovich theorem, the iteration converges for all q ∈Γ and

    $$ \| V_{3}(\mathbf{q}) \|_{L^{\infty}({\Gamma})} = \sup_{\mathbf{x} \in \overline{B(\mathbf{x}_{0},t^{*})}} |\mathbf{x}[3]| \leq t^{*} + \|\mathbf{x}^{*}(\mathbf{0})\|_{l^{2}(\mathbb{R}^{m})}. $$

Now, pick δe > 0 such that δ < δe and also pick ϰe = ϰ, λe = λ such that h < he ≤ 1. From the random load analysis, we have \(\gamma _{e} := \frac {\delta _{e}}{\varkappa _{e}} - \frac {\delta }{\varkappa }\) and

$$ \| \mathbf{G}(\boldsymbol{\alpha}_{0},\mathbf{g}) \| \leq \gamma_{e} $$

for all \(\mathbf {g} \in {\mathcal E}_{\varrho _{1},\varrho _{2},\varrho _{3}}\) where

$$ \upbeta = \left( \frac{(1 + \sqrt{5})}{6(2 + \sqrt{5}) } \right)^{\frac{1}{2}} \gamma_{e} $$

and for \(k = 1,\dots ,3\)

$$ \varrho_{k} := \log\left( -\frac{\upbeta}{c_{k}} + \left( \frac{{\upbeta}^{2}}{{c_{k}^{2}}} + 1 \right)^{\frac{1}{2}}\right). $$

Assuming that Theorem 6 is satisfied, then from Theorem 7 it follows that whenever g ∈Ψ then

$$ \| \mathbf{J}(\mathbf{x}_{0})^{-1} \mathbf{f}(\boldsymbol{\alpha}_{0},\mathbf{g}) \| \leq \delta_{e}, $$

the limit of the Newton iteration converges and is holomorphic in \({\mathcal E}_{\varrho _{1},\varrho _{2},\varrho _{3}} \subset {\Psi } \subset \mathbb {C}^{3}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castrillón-Candás, J.E., Kon, M. Analytic regularity and stochastic collocation of high-dimensional Newton iterates. Adv Comput Math 46, 42 (2020). https://doi.org/10.1007/s10444-020-09791-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-020-09791-1

Keywords

Navigation