Advances in Computational Mathematics

, Volume 45, Issue 3, pp 1689–1709 | Cite as

Convergence of subdivision schemes on Riemannian manifolds with nonpositive sectional curvature

  • Svenja HüningEmail author
  • Johannes Wallner
Open Access


This paper studies well-definedness and convergence of subdivision schemes which operate on Riemannian manifolds with nonpositive sectional curvature. These schemes are constructed from linear ones by replacing affine averages by the Riemannian centre of mass. In contrast to previous work, we consider schemes without any sign restriction on the mask, and our results apply to all input data. We also analyse the Hölder continuity of the resulting limit curves. Our main result states that if the norm of the derived scheme (resp. iterated derived scheme) is smaller than the corresponding dilation factor then the adapted scheme converges. In this way, we establish that convergence of a linear subdivision scheme is almost equivalent to convergence of its nonlinear manifold counterpart.


Refinement processes Riemannian geometry Geodesic averaging Hölder continuity 

Mathematics Subject Classification (2010)

41A25 65D05 65D17 



Open access funding provided by Austrian Science Fund (FWF).

Funding information

The authors acknowledge the support of the Austrian Science Fund (FWF): This research was supported by the doctoral programme Discrete Mathematics (grant no. W1230) and by the SFB-Transregio programme Discretization in geometry and dynamics (grant no. I705).


  1. 1.
    do Carmo, M.P.: Riemannian Geometry. Birkhäuser(1992)Google Scholar
  2. 2.
    Cavaretta, A.S., Dahmen, W., Michelli, C.A.: Stationary subdivision. Memoirs Am. Math. Soc., 93 (1991)Google Scholar
  3. 3.
    Chaikin, G.M.: An algorithm for high speed curve generation. Comput. Graphics Image Process. 3, 346–349 (1974)CrossRefGoogle Scholar
  4. 4.
    Donoho, D.: Wavelet-type representation of Lie-valued data. talk at the IMI “Approximation and Computation” meeting, May 12–17, Charleston SC (2001)Google Scholar
  5. 5.
    Dyn, N.: Subdivision schemes in CAGD. In: Light, W.A. (ed.) Advances in Numerical Analysis, vol. II, pp 36–104. Oxford Univ. Press (1992)Google Scholar
  6. 6.
    Dyn, N., Gregory, J., Levin, D.: A 4-point interpolatory subdivision scheme for curve design. Comput. Aided Geom. Des. 4, 257–268 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Dyn, N., Sharon, N.: A global approach to the refinement of manifold data. Math. Comput. 86(303), 375–395 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Dyn, N., Sharon, N.: Manifold-valued subdivision schemes based on geodesic inductive averaging. J. Comput. Appl. Math. 311, 54–67 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Ebner, O.: Convergence of iterative schemes in metric spaces. Proc. Am. Math. Soc. 141, 677–686 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Ebner, O.: Stochastic aspects of refinement schemes on metric spaces. SIAM J. Numer. Anal. 52, 717–734 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Grohs, P.: A general proximity analysis of nonlinear subdivision schemes. SIAM J. Math. Anal. 42, 729–750 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Grohs, P., Wallner, J.: Log-exponential analogues of univariate subdivision schemes in Lie groups and their smoothness properties. In: Neamtu, M., Schumaker, L.L. (eds.) Approximation Theory XII: San Antonio 2007, pp 181–190. Nashboro Press (2008)Google Scholar
  13. 13.
    Hardering, H.: Intrinsic Discretization Error Bounds for Geodesic Finite Elements. Ph.D. thesis, FU Berlin (2015)Google Scholar
  14. 14.
    Hatcher, A.: Algebraic Topology. Cambridge University Press (2002)Google Scholar
  15. 15.
    Karcher, H.: Riemannian center of mass and mollifier smoothing. Commun. Pure Appl. Math. 30, 509–541 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, vol. II. Wiley (1969)Google Scholar
  17. 17.
    Sander, O.: Geodesic finite elements of higher order. IMA J. Numer. Anal. 36, 238–266 (2016)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Ur Rahman, I., Drori, I., Stodden, V.C., Donoho, D.L., Schröder, P.: Multiscale representations for manifold-valued data. Multiscale Modeling Simul. 4 (4), 1201–1232 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Wallner, J.: Smoothness analysis of subdivision schemes by proximity. Constr. Approx. 24, 289–318 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Wallner, J.: On convergent interpolatory subdivision schemes in Riemannian geometry. Constr. Approx. 40, 473–486 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Wallner, J., Dyn, N.: Convergence and C 1 analysis of subdivision schemes on manifolds by proximity. Comput. Aided Geom. Des. 22, 593–622 (2005)CrossRefzbMATHGoogle Scholar
  22. 22.
    Wallner, J., Nava Yazdani, E., Grohs, P.: Smoothness properties of Lie group subdivision schemes. Multiscale Model. Simul. 6, 493–505 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Wallner, J., Nava Yazdani, E., Weinmann, A.: Convergence and smoothness analysis of subdivision rules in Riemannian and symmetric spaces. Adv. Comput. Math. 34, 201–218 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Xie, G., Yu, T.P.Y.: Smoothness equivalence properties of interpolatory Lie group subdivision schemes. IMA J. Numer. Anal. 30(3), 731–750 (2010)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2019

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Institut f. GeometrieTU GrazGrazAustria

Personalised recommendations