Advances in Computational Mathematics

, Volume 45, Issue 3, pp 1469–1498 | Cite as

Convergence of an implicit Euler Galerkin scheme for Poisson–Maxwell–Stefan systems

  • Ansgar JüngelEmail author
  • Oliver Leingang
Open Access


A fully discrete Galerkin scheme for a thermodynamically consistent transient Maxwell–Stefan system for the mass particle densities, coupled to the Poisson equation for the electric potential, is investigated. The system models the diffusive dynamics of an isothermal ionized fluid mixture with vanishing barycentric velocity. The equations are studied in a bounded domain, and different molar masses are allowed. The Galerkin scheme preserves the total mass, the nonnegativity of the particle densities, their boundedness and satisfies the second law of thermodynamics in the sense that the discrete entropy production is nonnegative. The existence of solutions to the Galerkin scheme and the convergence of a subsequence to a solution to the continuous system is proved. Compared to previous works, the novelty consists in the treatment of the drift terms involving the electric field. Numerical experiments show the sensitive dependence of the particle densities and the equilibration rate on the molar masses.


Maxwell–Stefan systems Cross diffusion Ionized fluid mixtures Entropy method Finite-element approximation Galerkin method Numerical convergence 

Mathematics Subject Classification (2010)

35K51 35K55 82B35 



Open access funding provided by Austrian Science Fund (FWF).


  1. 1.
    Bothe, D., et al.: On the Maxwell-Stefan Equations to Multicomponent Diffusion. In: Escher, J. (ed.) Parabolic Problems. Progress in Nonlinear Differential Equations and Their Applications, pp. 81–93. Springer, Basel (2011)Google Scholar
  2. 2.
    Bothe, D., Dreyer, W.: Continuum thermodynamics of chemically reacting fluid mixtures. Acta Mech. 226, 1757–1805 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Boudin, L., Grec, B., Salvarani, F.: A mathematical and numerical analysis of the Maxwell–Stefan diffusion equations. Discret. Cont. Dyn. Sys. B 17, 1427–1440 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Boudin, L., Grec, B., Pavić, M., Salvarani, F.: Diffusion asymptotics of a kinetic model for gaseous mixtures. Kinetic Related Model 6, 137–157 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cancès, C., Nabet, F., Vohralik, M.: Convergence and a posteriori error analysis for energy-stable finite element approximations of degenerate parabolic equations. Preprint, 2018. hal-01894884Google Scholar
  6. 6.
    Carnes, B., Carey, G.: Local boundary value problems for the error in FE approximation of non-linear diffusion systems. Intern. J. Numer. Meth Engrg. 73, 665–684 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chatzipantelidis, P., Horváth, Z., Thomée, V.: On preservation of positivity in some finite element methods for the heat equation. Comput. Meth. Appl. Math. 15, 417–437 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Chen, X., Jüngel, A.: Analysis of an incompressible Navier–Stokes–Maxwell–Stefan system. Commun. Math Phys. 340, 471–497 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Daus, E., Jüngel, A., Tang, B.-Q.: Exponential time decay of solutions to reaction-cross-diffusion systems of Maxwell–Stefan type. Submitted for publication, arXiv:1802.10274 (2018)
  10. 10.
    Desvillettes, L., Fellner, K., Pierre, M., Vovelle, J.: Global existence for quadratic systems of reaction-diffusion. Adv Nonlin. Stud. 7, 491–511 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Dieter-Kisling, K., Marschall, H., Bothe, D.: Numerical method for coupled interfacial surfactant transport on dynamic surface meshes of general topology. Comput. Fluids 109, 168–184 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Dreher, M., Jüngel, A.: Compact families of piecewise constant functions in L p(0,T; B). Nonlin. Anal. 75, 3072–3077 (2012)CrossRefzbMATHGoogle Scholar
  13. 13.
    Dreyer, W., Druet, P.-E., Gajewski, P., Guhlke, C.: Analysis of improved Nernst-Planck-Poisson models of compressible isothermal electrolytes. Part I Derivation of the model and survey of the results. WIAS Berlin, Germany, preprint no. 2395 (2017)Google Scholar
  14. 14.
    Dreyer, W., Guhlke, C., Müller, R.: Overcoming the shortcomings of the Nernst-Planck-Poisson model. Phys. Chem. Chem Phys. 15, 7075–7086 (2013)CrossRefGoogle Scholar
  15. 15.
    Duncan, J., Toor, H.: An experimental study of three component gas diffusion. AIChE J. 8, 38–41 (1962)CrossRefGoogle Scholar
  16. 16.
    Gadau, S., Jüngel, A.: A three-dimensional mixed finite-element approximation of the semiconductor energy-transport equations. SIAM J. Sci Comput. 31, 1120–1140 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Galkin, V., Makashev, N.: Modification of the first approximation of the Chapman-Enskog method for a gas mixture. Fluid Dynam. 27, 590–596 (1993). Translated from em Izv. Ross. Akad. Nauk Mekh. Zhidk. Gaza 4 (1992), 178-185 (Russian)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Geiser, J.: Iterative solvers for the Maxwell-Stefan diffusion equations: methods and applications in plasma and particle transport. Cogent Math. 2, 1092913, 16. (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Giovangigli, V.: Multicomponent Flow Modeling. Basel, Birkhäuser (1999)CrossRefzbMATHGoogle Scholar
  20. 20.
    Giovangigli, V., Massot, M.: The local Cauchy problem for multicomponent flows in full vibrational non-equilibrium. Math. Meth. Appl. Sci. 21, 1415–1439 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Herberg, M., Meyries, M., Prüss, J., Wilke, M.: Reaction-diffusion systems of Maxwell–Stefan type with reversible mass-action kinetics. Nonlin. Anal. 159, 264–284 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Hutridurga, H., Salvarani, F.: Maxwell–Stefan diffusion asymptotics for gas mixtures in non-isothermal setting. Nonlin. Anal. 159, 285–297 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Hutridurga, H., Salvarani, F.: Existence and uniqueness analysis of a non-isothermal cross-diffusion system of Maxwell-Stefan type. Appl. Math. Lett. 75, 108–113 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Jüngel, A.: The boundedness-by-entropy method for cross-diffusion systems. Nonlinearity 28, 1963–2001 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Jüngel, A., Stelzer, I.: Entropy structure of a cross-diffusion tumor-growth model. Math. Models Meth. Appl. Sci. 22, 1250009, 26 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Jüngel, A., Stelzer, I.: Existence analysis of Maxwell-Stefan systems for multicomponent mixtures. SIAM J. Math Anal. 45, 2421–2440 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Leonardia, E., Angeli, C.: On the Maxwell–Stefan approach to diffusion: a general resolution in the transient regime for one-dimensional systems. J. Phys. Chem. B 114, 151–164 (2010)CrossRefGoogle Scholar
  28. 28.
    Loos, J.-P., Verheijen, P., Moulin, J.: Numerical simulation of the generalized Maxwell–Stefan model for multicomponent diffusion in microporous sorbents. Collect. Czech. Chem Commun. 57, 687–697 (1992)CrossRefGoogle Scholar
  29. 29.
    Marion, M., Temam, R.: Global existence for fully nonlinear reaction-diffusion systems describing multicomponent reactive flows. J. Math Pures Appl. 104, 102–138 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Maxwell, C.: On the dynamical theory of gases. Phil. Trans. Roy. Soc. Lond. 157, 49–88 (1866)Google Scholar
  31. 31.
    McLeod, M., Bourgault, Y.: Mixed finite element methods for addressing multi-species diffusion using the Maxwell-Stefan equations. Comput. Meth. Appl. Mech Engrg. 279, 515–535 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Nernst, W.: Die elektromotorische Wirksamkeit der Ionen. Z. Phys. Chem. 4, 129–181 (1889)Google Scholar
  33. 33.
    Peerenboom, K., van Dijk, J., Boonkkamp, J., Liu, L., Goedheer, W., van der Mullen, J.: Mass conservative finite volume discretization of the continuity equations in multi-component mixtures. J. Comput. Phys. 230, 3525–3537 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Planck, M.: Über die Potentialdifferenz zwischen zwei verdünnten Lösungen binärer Electrolyte. Ann. Phys. 276, 561–576 (1890)CrossRefzbMATHGoogle Scholar
  35. 35.
    Psaltis, S., Farrell, T.: Comparing charge transport predictions for a ternary electrolyte using the Maxwell–Stefan and Nernst–Planck equations. J. Electrochem. Soc. 158, A33–A42 (2011)CrossRefGoogle Scholar
  36. 36.
    Salvarani, F., Soares, J.: On the relaxation of the Maxwell–Stefan system to linear diffusion. Appl. Math. Lett. 85, 15–21 (2018)Google Scholar
  37. 37.
    Stefan, J.: Über das Gleichgewicht und Bewegung, insbesondere die Diffusion von Gasgemengen. Sitzungsberichte Kaiserl. Akad. Wiss. Wien 63, 63–124 (1871)Google Scholar

Copyright information

© The Author(s) 2019

OpenAccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Institute for Analysis and Scientific ComputingVienna University of TechnologyViennaAustria

Personalised recommendations