Skip to main content
Log in

Decomposition and reconstruction of multidimensional signals by radial functions with tension parameters

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

The aim of the paper is to construct a multiresolution analysis of L2(IRd) based on generalized kernels which are fundamental solutions of differential operators of the form \(\boldsymbol {\prod }_{\ell = 1}^{m}(-{\Delta }+\kappa _{\ell }^{2}\,I)\). We study its properties and provide a set of pre-wavelets associated with it, as well as the filters which are indispensable to perform decomposition and reconstruction of a given signal, being very useful in applied problems thanks to the presence of the tension parameters κ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akima, H.: A new method of interpolation and smooth curve fitting based on local procedure. J. Assoc. Comput. Mach. 17(4), 589–602 (1970)

    Article  MATH  Google Scholar 

  2. Bacchelli, B., Bozzini, M., Rabut, C., Varas, M.: Decomposition and reconstruction of multidimensional signals using polyharmonic pre-wavelets. Appl. Comput. Harmon. Anal. 18(3), 282–299 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bacchelli, B., Bozzini, M., Rossini, M.: On the errors of multidimensional MRA based on non-separable scaling functions. Int. J. Wavelets Multiresolut. Inf. Process. 4(3), 475–488 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bouhamidi, A.: Hilbertian approach for univariate spline with tension. Approx. Theory Appl. 17(4), 36–57 (2001)

    MathSciNet  MATH  Google Scholar 

  5. Bozzini, M., Rossini, M., Schaback, R.: Generalized Whittle-Matérn and polyharmonic kernels. Adv. Comput. Math. 39(1), 129–141 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Buhmann, M.D.: Radial basis functions: theory and implementations, volume 12 of Cambridge monographs on applied and computational mathematics. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  7. Chui, C.K., Stöckler, J., Ward, J.D.: Analytic wavelets generated by radial functions. Adv. Comput. Math. 5(1), 95–123 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. de Boor, C., DeVore, R.A., Ron, A.: On the construction of multivariate (pre)wavelets. Constr. Approx. 9(2-3), 123–166 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. Duchon, J.: Interpolation des fonctions de deux variables suivant le principe de la flexion des plaques minces. Rev. Francaise Automat. Informat. Recherche Opérationnelle Sér. RAIRO Analyse Numérique 10(R-3), 5–12 (1976)

    MathSciNet  Google Scholar 

  10. Fasshauer, G.E.: Green’s functions: taking another look at kernel approximation, radial basis functions, and splines. In: Approximation theory XIII: San Antonio 2010, volume 13 of Springer Proc. Math., pp. 37–63. Springer, New York (2012)

  11. Iske, A.: Multiresolution methods in scattered data modelling, volume 37 of Lecture Notes in Computational Science and Engineering. Springer-Verlag, Berlin (2004)

    Book  Google Scholar 

  12. Khalidov, I., Unser, M., Ward, J.P.: Operator-like wavelet bases of L 2( d). J. Fourier Anal. Appl. 19(6), 1294–1322 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Koch, P.E., Lyche, T.: Exponential B-splines in tension. In: Approximation theory VI, Vol. II (College Station, TX, 1989), pp. 361–364. Academic Press, Boston, MA (1989)

  14. Madych, W.R.: Some elementary properties of multiresolution analyses of L 2(R n). In: Wavelets, volume 2 of Wavelet Anal. Appl., pp. 259–294. Academic Press, Boston, MA (1992)

  15. Madych, W.R.: Spline type summability for multivariate sampling. In: Analysis of divergence (Orono, ME, 1997), Appl. Numer. Harmon. Anal., pp. 475–512. Birkhäuser Boston, Boston, MA (1999)

  16. Rabut, C., Rossini, M.: Polyharmonic multiresolution analysis: An overview and some new results. Numerical Algorithms 48(1-3), 135–160 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Schumaker, L.L.: Spline functions: basic theory. Wiley–Interscience, New York (1981)

    MATH  Google Scholar 

  18. Stöckler, J.: Non-stationary wavelets. In: Multivariate approximation: from CAGD to wavelets (Santiago, 1992), volume 3 of Ser. Approx. Decompos., pp. 307–320. World Sci. Publ., River Edge, NJ (1993)

  19. Unser, M., Blu, T.: Cardinal exponential splines: Part I – Theory and filtering algorithms. IEEE Trans. Signal Proc. Networks 53, 1425–1438 (2005)

    Article  MATH  Google Scholar 

  20. Van De Ville, D., Blu, T., Unser, M.: Isotropic polyharmonic B-splines: scaling functions and wavelets. IEEE Trans. Image Process. 14(11), 1798–1813 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous reviewers for their valuable remarks and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milvia Rossini.

Additional information

Communicated by: Robert Schaback

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bozzini, M., Rabut, C. & Rossini, M. Decomposition and reconstruction of multidimensional signals by radial functions with tension parameters. Adv Comput Math 44, 1003–1040 (2018). https://doi.org/10.1007/s10444-017-9571-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-017-9571-7

Keywords

Mathematics Subject Classification (2010)

Navigation