Skip to main content
Log in

Operator-Like Wavelet Bases of \(L_{2}(\mathbb{R}^{d})\)

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

The connection between derivative operators and wavelets is well known. Here we generalize the concept by constructing multiresolution approximations and wavelet basis functions that act like Fourier multiplier operators. This construction follows from a stochastic model: signals are tempered distributions such that the application of a whitening (differential) operator results in a realization of a sparse white noise. Using wavelets constructed from these operators, the sparsity of the white noise can be inherited by the wavelet coefficients. In this paper, we specify such wavelets in full generality and determine their properties in terms of the underlying operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aldroubi, A.: Portraits of frames. Proc. Am. Math. Soc. 123(6), 1661–1668 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aldroubi, A., Unser, M.: Sampling procedures in function spaces and asymptotic equivalence with Shannon’s sampling theory. Numer. Funct. Anal. Optim. 15(1–2), 1–21 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baxter, B.J.C.: The interpolation theory of radial basis functions. PhD thesis, University of Cambridge (1992)

  4. Chui, C.K., Stöckler, J., Ward, J.D.: Analytic wavelets generated by radial functions. Adv. Comput. Math. 5(1), 95–123 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chui, C.K., Wang, J.: A cardinal spline approach to wavelets. Proc. Am. Math. Soc. 113(3), 785–793 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chui, C.K., Ward, J.D., Jetter, K.: Cardinal interpolation with differences of tempered functions. Comput. Math. Appl. 24(12), 35–48 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chui, C.K., Ward, J.D., Jetter, K., Stöckler, J.: Wavelets for analyzing scattered data: an unbounded operator approach. Appl. Comput. Harmon. Anal. 3(3), 254–267 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. de Boor, C., DeVore, R.A., Ron, A.: On the construction of multivariate (pre)wavelets. Constr. Approx. 9(2–3), 123–166 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. de Boor, C., DeVore, R.A., Ron, A.: Approximation from shift-invariant subspaces of \({L}_{2}(\mathbb{R}^{d})\). Trans. Am. Math. Soc. 341(2), 787–806 (1994)

    MATH  Google Scholar 

  10. de Boor, C., Höllig, K., Riemenschneider, S.: Convergence of cardinal series. Proc. Am. Math. Soc. 98(3), 457–460 (1986)

    Article  MATH  Google Scholar 

  11. Duffy, D.G.: Green’s Functions with Applications. Studies in Advanced Mathematics. Chapman and Hall/CRC, Boca Raton (2001)

    Book  MATH  Google Scholar 

  12. Grafakos, L.: Classical Fourier Analysis, 2nd edn. Graduate Texts in Mathematics, vol. 249. Springer, Berlin (2008)

    MATH  Google Scholar 

  13. Kalker, T.: On multidimensional sampling. In: Madisetti, V.K., Williams, D.B. (eds.) Digital Signal Processing Handbook. CRC Press, New York (1999)

    Google Scholar 

  14. Khalidov, I., Fadili, J., Lazeyras, F., Van De Ville, D., Unser, M.: Activelets: wavelets for sparse representation of hemodynamic responses. Signal Process. 91(12), 2810–2821 (2011)

    Article  Google Scholar 

  15. Khalidov, I., Unser, M.: From differential equations to the construction of new wavelet-like bases. IEEE Trans. Signal Process. 54(4), 1256–1267 (2006)

    Article  Google Scholar 

  16. Mallat, S.G.: Multiresolution approximations and wavelet orthonormal bases of L 2(R). Trans. Am. Math. Soc. 315(1), 69–87 (1989)

    MathSciNet  MATH  Google Scholar 

  17. Mallat, S.G.: A Wavelet Tour of Signal Processing: The Sparse Way, 3rd edn. Elsevier/Academic Press, Amsterdam (2009)

    Google Scholar 

  18. Meyer, Y.: Wavelets and Operators. Cambridge Studies in Advanced Mathematics, vol. 37. Cambridge University Press, Cambridge (1992). Translated from the 1990 French original by D.H. Salinger

    MATH  Google Scholar 

  19. Micchelli, C.A., Rabut, C., Utreras, F.I.: Using the refinement equation for the construction of pre-wavelets III: Elliptic splines. Numer. Algorithms 1(3), 331–351 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ron, A., Shen, Z.: Frames and stable bases for shift-invariant subspaces of L 2(R d). Can. J. Math. 47(5), 1051–1094 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  21. Stöckler, J.: Non-stationary wavelets. In: Jetter, K., Utreras, F. (eds.) Multivariate Approximation: From CAGD to Wavelets, pp. 307–320. World Scientific, Singapore (1993)

    Google Scholar 

  22. Unser, M., Tafti, P.D.: Stochastic models for sparse and piecewise-smooth signals. IEEE Trans. Signal Process. 59(3), 989–1006 (2011)

    Article  MathSciNet  Google Scholar 

  23. Unser, M., Tafti, P.D., Sun, Q.: A unified formulation of Gaussian vs. sparse stochastic processes–Part I: Continuous-domain theory. arXiv:1108.6150v2

  24. Vaidyanathan, P.P.: Fundamentals of multidimensional multirate digital signal processing. Sadhana 15(3), 157–176 (1990)

    Article  Google Scholar 

  25. Van De Ville, D., Blu, T., Unser, M.: Isotropic polyharmonic B-splines: scaling functions and wavelets. IEEE Trans. Image Process. 14(11), 1798–1813 (2005)

    Article  MathSciNet  Google Scholar 

  26. Van De Ville, D., Forster-Heinlein, B., Unser, M., Blu, T.: Analytical footprints: compact representation of elementary singularities in wavelet bases. IEEE Trans. Signal Process. 58(12), 6105–6118 (2010)

    Article  MathSciNet  Google Scholar 

  27. Van De Ville, D., Unser, M.: Complex wavelet bases, steerability, and the Marr-like pyramid. IEEE Trans. Image Process. 17(11), 2063–2080 (2008)

    Article  MathSciNet  Google Scholar 

  28. Verhaeghe, J., Van De Ville, D., Khalidov, I., D’Asseler, Y., Lemahieu, I., Unser, M.: Dynamic PET reconstruction using wavelet regularization with adapted basis functions. IEEE Trans. Med. Imaging 27(7), 943–959 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Paul Ward.

Additional information

Communicated by Karlheinz Gröchenig.

This research was funded in part by ERC Grant ERC-2010-AdG 267439-FUN-SP and by the Swiss National Science Foundation under Grant 200020-121763.

Appendix A: Discrete Sums

Appendix A: Discrete Sums

Let \(X=\{\boldsymbol{x}_{k}\}_{k\in\mathbb{N}}\) be a countable collection of points in \(\mathbb{R}^{d}\), and define

$$\begin{aligned} h_X &:= \sup_{\boldsymbol{x} \in\mathbb{R}^d} \inf_{k\in\mathbb{N}} \lvert\boldsymbol{x}-\boldsymbol{x}_k \rvert \\ q_X &:= \frac{1}{2} \inf_{k\neq k'} \lvert \boldsymbol{x}_k-\boldsymbol {x}_{k'} \rvert. \end{aligned}$$

Also, let B(x,r) denote the ball of radius r centered at x. Proving Riesz bounds for the wavelet spaces relies on the following propositions concerning sums of function values over discrete sets.

Proposition 5

If h X <∞ and r>d/2, then there exists a constant C>0 (depending only on r and d, not h X ) such that

$$ \sum_{ \lvert\boldsymbol{x}_k \rvert \geq2h_X} \lvert\boldsymbol {x}_k \rvert^{-2r} \geq C h_X^{-2r} $$

Proof

For |x k |≥2h X , we have

$$ \biggl\lvert \boldsymbol{x}_k -h_X \frac{\boldsymbol{x}_k}{ \lvert\boldsymbol {x}_k \rvert} \biggr\rvert \geq 2^{-1} \lvert\boldsymbol{x}_k \rvert, $$

which implies

$$ \lvert\boldsymbol{x}_k \rvert^{-2r} \geq2^{-2r} \biggl\lvert \boldsymbol{x}_k -h_X \frac{\boldsymbol{x}_k}{ \lvert\boldsymbol{x}_k \rvert} \biggr\rvert ^{-2r}. $$

Then

$$\begin{aligned} \sum_{ \lvert\boldsymbol{x}_k \rvert\geq2h_X} \lvert\boldsymbol {x}_k \rvert^{-2r} &\geq2^{-2r} \sum_{ \lvert\boldsymbol{x}_k \rvert\geq2h_X} \biggl\lvert \boldsymbol{x}_k -h_X \frac{\boldsymbol{x}_k}{ \lvert\boldsymbol {x}_k \rvert} \biggr\rvert ^{-2r} \frac{\text{Vol} (B(\boldsymbol{x}_k,h_X) )}{\text{Vol} (B(\boldsymbol{x}_k,h_X) )} \\ &\geq\frac{2^{-2r}}{\text{Vol} (B(\boldsymbol{0},h_X) )} \sum_{ \lvert\boldsymbol {x}_k \rvert \geq2h_X} \int _{B(\boldsymbol{x}_k,h_X)} \lvert\boldsymbol{x} \rvert^{-2r} {\rm d}\boldsymbol{x} \\ &\geq Ch_X^{-d} \int_{3h_X}^{\infty} t^{-2r+(d-1)}{\rm d}t \\ &\geq Ch_X^{-2r} \end{aligned}$$

 □

Proposition 6

If r>d/2 and |x k |≥q X /2 for all \(k\in\mathbb {N}\), then there exists a constant C>0 (depending only on r and d, not q X ) such that

$$ \sum_{k\in\mathbb{N}} \lvert\boldsymbol{x}_k \rvert^{-2r} \leq C q_X^{-2r} $$

Proof

Using the fact that |x k |≥q X /2, we can write

$$ \biggl\lvert \boldsymbol{x}_k +\frac{q_X}{4} \frac{\boldsymbol{x}_k}{ \lvert \boldsymbol{x}_k \rvert} \biggr\rvert \leq2 \lvert\boldsymbol{x}_k \rvert, $$

which implies

$$ \lvert\boldsymbol{x}_k \rvert^{-2r} \leq2^{2r} \biggl\lvert \boldsymbol {x}_k +\frac{q_X}{4} \frac{\boldsymbol{x}_k}{ \lvert\boldsymbol{x}_k \rvert} \biggr\rvert ^{-2r}. $$

We now have

$$\begin{aligned} \sum_{k\in\mathbb{N}} \lvert\boldsymbol{x}_k \rvert^{-2r} &\leq2^{2r} \sum_{k\in\mathbb{N}} \biggl\lvert \boldsymbol{x}_k +\frac {q_X}{4} \frac{\boldsymbol{x}_k}{ \lvert\boldsymbol{x}_k \rvert} \biggr\rvert ^{-2r} \frac{\text{Vol} (B(\boldsymbol{x}_k,q_X/4) )}{\text{Vol} (B(\boldsymbol {x}_k,q_X/4) )} \\ &\leq\frac{2^{2r}}{\text{Vol} (B(\boldsymbol{0},q_X/4) )} \sum_{k\in \mathbb{N}} \int _{B(\boldsymbol{x}_k,q_X/4)} \lvert\boldsymbol{x} \rvert^{-2r} {\rm d}\boldsymbol{x} \\ &\leq\frac{2^{2r}}{\text{Vol} (B(\boldsymbol{0},q_X/4) )} \int_{ \lvert\boldsymbol {x} \rvert>q_X/4} \lvert\boldsymbol{x} \rvert ^{-2r} {\rm d}\boldsymbol{x} \\ &\leq Cq_X^{-d} \int_{q_X/4}^{\infty} t^{-2r+(d-1)}{\rm d}t \\ &\leq C q_X^{-2r}. \end{aligned}$$

 □

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khalidov, I., Unser, M. & Ward, J.P. Operator-Like Wavelet Bases of \(L_{2}(\mathbb{R}^{d})\) . J Fourier Anal Appl 19, 1294–1322 (2013). https://doi.org/10.1007/s00041-013-9306-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-013-9306-1

Keywords

Mathematics Subject Classification

Navigation