Skip to main content
Log in

Construction and analysis of higher order variational integrators for dynamical systems with holonomic constraints

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this work, variational integrators of higher order for dynamical systems with holonomic constraints are constructed and analyzed. The construction is based on approximating the configuration and the Lagrange multiplier via different polynomials. The splitting of the augmented Lagrangian in two parts enables the use of different quadrature formulas to approximate the integral of each part. Conditions are derived that ensure the linear independence of the higher order constrained discrete Euler-Lagrange equations and stiff accuracy. Time reversibility is investigated for the discrete flow on configuration level only as for the flow on configuration and momentum level. The fulfillment of the hidden constraints plays an important role for the time reversibility of the presented integrators. The order of convergence is investigated numerically. Order reduction of the momentum and the Lagrange multiplier compared to the order of the configuration occurs in general, but can be avoided by fulfilling the hidden constraints in a simple post processing step. Regarding efficiency versus accuracy a numerical analysis yields that higher orders increase the accuracy of the discrete solution substantially while the computational costs decrease. A comparison to the constrained Galerkin methods in Marsden and West (Acta Numerica 10, 357–514 2001) and the symplectic SPARK integrators of Jay (SIAM Journal on Numerical Analysis 45(5), 1814–1842 2007) reveals that the approach presented here is more general and thus allows for more flexibility in the design of the integrator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Celledoni, E., Marthinsen, H., Owren, B.: An introduction to Lie group integrators–basics, new developments and applications. J. Comput. Phys. 257, 1040–1061 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  2. Hairer, E.: Global modified Hamiltonian for constrained symplectic integrators. Numer. Math. 95(2), 325–336 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Hairer, E., Jay, L.: Implicit Runge-Kutta methods for higher-index differential-algebraic systems. WSSIAA Contrib. Numer. Math. 2, 213–224 (1993)

    Article  MATH  Google Scholar 

  4. Hairer, E., Lubich, C., Roche, M.: The Numerical solution of differential-algebraic systems by Runge-Kutta methods. Lecture notes in mathematics 1409 (1989)

  5. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations Springer Series in Computational Mathematics, vol. 31. Springer, Berlin Heidelberg (2006)

    MATH  Google Scholar 

  6. Hall, J., Leok, M.: Spectral variational integrators. Numer. Math. 130(4), 681–740 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  7. Hildebrand, F.B.: Introduction to Numerical Analysis, 2nd edn. Dover Publications, New York (1987)

    MATH  Google Scholar 

  8. Jay, L.O.: Collocation methods for differential-algebraic equations of index 3. Numer. Math. 65(1), 407–421 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  9. Jay, L.O.: Convergence of Runge-Kutta methods for differential-algebraic systems of index 3. Appl. Numer. Math. 17(2), 97–118 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  10. Jay, L.O.: Symplectic partitioned Runge-Kutta methods for constrained Hamiltonian systems. SIAM J. Numer. Anal. 33(1), 368–387 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  11. Jay, L.O.: Structure preservation for constrained dynamics with super partitioned additive Runge-Kutta methods. SIAM J. Sci. Comput. 20(2), 416–446 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. Jay, L.O.: Specialized partitioned additive Runge-Kutta methods for systems of overdetermined DAEs with holonomic constraints. SIAM J. Numer. Anal. 45(5), 1814–1842 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Leimkuhler, B.J., Skeel, R.D.: Symplectic numerical integrators in constrained Hamiltonian systems. J. Comput. Phys. 112(1), 117–125 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  14. Leyendecker, S., Marsden, J.E., Ortiz, M.: Variational integrators for constrained dynamical systems. ZAMM-J. Appl. Math. Mech. Z. Angew. Math. Mech. 88(9), 677–708 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  15. Leyendecker, S., Ober-Blöbaum, S.: A variational approach to multirate integration for constrained systems. In: Multibody Dynamics, Computational Methods in Applied Sciences, vol. 28, pp. 97–121. Springer (2013)

  16. Leyendecker, S., Ober-Blöbaum, S., Marsden, J.E., Ortiz, M.: Discrete mechanics and optimal control for constrained systems. Optimal Control, Applications and Methods 31(6), 505–528 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  17. Marsden, J.E., West, M.: Discrete mechanics and variational integrators. Acta Numerica 10, 357–514 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  18. McLachlan, R.I., Modin, K., Verdier, O., Wilkins, M.: Geometric generalisations of SHAKE and RATTLE. Found. Comput. Math. 14(2), 339–370 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  19. Ober-Blöbaum, S.: Galerkin variational integrators and modified symplectic Runge–Kutta methods. IMA J. Numer. Anal. 1–32 (2016)

  20. Ober-Blöbaum, S., Saake, N.: Construction and analysis of higher order Galerkin variational integrators. Adv. Comput. Math. 41(6), 955–986 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  21. Reich, S.: Symplectic integration of constrained Hamiltonian systems by composition methods. SIAM J. Numer. Anal. 33(2), 475–491 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  22. Schwarz, H.R., Köckler, N.: Numerische Mathematik. Vieweg+Teubner, Wiesbaden (2011)

    Book  MATH  Google Scholar 

  23. Small, S.J.: Runge-Kutta Type Methods for Differential-Algebraic Equations in Mechanics. Ph.D. thesis, University of Iowa (2011)

  24. Tao, M., Owhadi, H.: Variational and linearly implicit integrators, with applications. IMA J. Numer. Anal. 36(1), 80–107 (2016)

    MATH  MathSciNet  Google Scholar 

  25. Wenger, T., Ober-Blöbaum, S., Leyendecker, S.: Constrained Galerkin variational integrators and modified constrained symplectic Runge-Kutta methods. In: AIP conference proceedings. AIP publishing. to appear

  26. Wenger, T., Ober-Blöbaum, S., Leyendecker, S.: Variational integrators of higher order for constrained dynamical systems. PAMM 16(1), 775–776 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sigrid Leyendecker.

Additional information

Communicated by: Arieh Iserles

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wenger, T., Ober-Blöbaum, S. & Leyendecker, S. Construction and analysis of higher order variational integrators for dynamical systems with holonomic constraints. Adv Comput Math 43, 1163–1195 (2017). https://doi.org/10.1007/s10444-017-9520-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-017-9520-5

Keywords

Mathematics Subject Classification (2010)

Navigation