Skip to main content
Log in

Analysis of higher order phase fitted variational integrators

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In the present, the linear stability properties of the higher order phase fitted variational integrators are investigated. Towards this purpose, at first we calculate the eigenvalues of the amplification matrix for each method. Then, since the proposed integrators are derived specifically for the numerical integration of systems with oscillatory solutions, the linear stability analysis verifies their good behavior, when used for these problems. Finally, we test the proposed methods on several numerical examples, first with regard to their stability and secondly concerning the behavior in long term integration of highly oscillatory problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Engquist, B., Fokas, A., Hairer, E., Iserles, A.: Highly oscillatory problems. Cambridge University Press (2009)

  2. Iserles, A., Nørsett, S.P.: On quadrature methods for highly oscillatory integrals and their implementation. BIT Numer. Math. 44, 755 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Stern, A., Grinspun, E.: Implicit-explicit integration of highly oscillatory problems. SIAM Multiscale Model. Simul. 7, 1779 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bruca, L., Negro, L.: A one-step method for direct integration of structural dynamic equations. Internat. J. Numer. Methods Engnr. 15, 685 (1980)

    Article  Google Scholar 

  5. Raptis, A.D., Simos, T.E.: A four-step phase-fitted method for the numerical integration of second order initial-value problem. BIT Numer. Math. 31, 160 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  6. Simos, T.E., Aguiar, J.V.: On the construction of efficient methods for second order IVPs with oscillating solution. Int. J. Mod. Phys. C 12, 1453 (2001)

    Article  MathSciNet  Google Scholar 

  7. Psyhoyios, G., Simos, T.E.: Exponentially and trigonometrically fitted explicit advanced step-point (EAS) methods for initial value problems with oscillating solutions. Int. J. Mod. Phys. C 14, 175 (2003)

    Article  MATH  Google Scholar 

  8. Wendlandt, J., Marsden, J.: Mechanical integrators derived from a discrete variational principle. Phys. D 106, 223 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kane, C., Marsden, J., Ortiz, M.: Symplectic-energy-momentum preserving variational integrators. J. Math. Phys. 40, 3353 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Marsden, J., West, M.: Discrete mechanics and variational integrators. Acta Numerica 10, 357 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hairer, E., Lubich, C., Wanner, G.: Geometric numerical integration illustrated by the Störmer-Verlet method. Acta Numerica 12, 399 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Leok, M., Zhang, J.: Discrete Hamiltonian variational integrators. IMA J. Numer. Anal. 31, 1497 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kosmas, O.T., Vlachos, D.S.: Phase-fitted discrete Lagrangian integrators. Comput. Phys. Commun. 181, 562 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kosmas, O.T., Leyendecker, S.: Phase lag analysis of variational integrators using interpolation techniques. PAMM Proc. Appl. Math. Mech. 12, 677 (2012)

    Article  Google Scholar 

  15. Kosmas, O.T., Leyendecker, S.: Frequency estimation for phase fitted variational integrators on regular grids. Submitted

  16. Kosmas, O.T.: Charged particle in an electromagnetic field using variational integrators. ICNAAM Numer. Anal. Appl. Math. 1389, 1927 (2011)

    Google Scholar 

  17. Kosmas, O.T., Vlachos, D.S.: Local path fitting: a new approach to variational integrators. J. Comput. Appl. Math. 236, 2632 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Leimkuhler, B., Reich, S.: Simulating Hamiltonian dynamics. Cambridge Monographs on Applied and Computational Mathematics (2004)

  19. Ober-Blöbaum, S., Saake, N.: Construction and analysis of higher order Galerkin variational integrators arXiv:1304.1398. Accessed 4 April 2013

  20. lFermi, E., Pasta, J., Ulam, S.: Studies of Nonlinear Problems. Los Alamos report LA-1940 (1955), published later in Collected Papers of Enrico Fermi Segré, E. (ed.) . University of Chicago Press (1965)

  21. Weissert, T.P.: The Genesis of Simulation in Dynamics: Pursuing the Fermi-Pasta-Ulam Problem. Springer (1997)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Odysseas Kosmas.

Additional information

Communicated by: Axel Voigt

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kosmas, O., Leyendecker, S. Analysis of higher order phase fitted variational integrators. Adv Comput Math 42, 605–619 (2016). https://doi.org/10.1007/s10444-015-9436-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-015-9436-x

Keywords

Mathematics Subject Classification (2010)

Navigation