Skip to main content

Error Analysis Through Energy Minimization and Stability Properties of Exponential Integrators

  • Chapter
  • First Online:
Nonlinear Analysis and Global Optimization

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 167))

Abstract

In this article, the stability property and the error analysis of higher-order exponential variational integration are examined and discussed. Toward this purpose, at first we recall the derivation of these integrators and then address the eigenvalue problem of the amplification matrix for advantageous choices of the number of intermediate points employed. Obviously, the latter determines the order of the numerical accuracy of the method. Following a linear stability analysis process we show that the methods with at least one intermediate point are unconditionally stable. Finally, we explore the behavior of the energy errors of the presented schemes in prominent numerical examples and point out their excellent efficiency in long term integration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. Engquist, A. Fokas, E. Hairer, A. Iserles, Highly Oscillatory Problems (Cambridge University Press, Cambridge, 2009)

    Book  Google Scholar 

  2. J. Wendlandt, J.E. Marsden, Mechanical integrators derived from a discrete variational principle. Phys. D, 106, 223–246 (1997)

    Article  MathSciNet  Google Scholar 

  3. C. Kane, J.E. Marsden, M. Ortiz, Symplectic-energy-momentum preserving variational integrators. J. Math. Phys. 40, 3353–3371 (2001)

    Article  MathSciNet  Google Scholar 

  4. J.E. Marsden, M. West, Discrete mechanics and variational integrators. Acta Numer. 10, 357–514 (2001)

    Article  MathSciNet  Google Scholar 

  5. E. Hairer, C. Lubich, G. Wanner, Geometric numerical integration illustrated by the Störmer-Verlet method. Acta Numer. 12, 399–450 (2003)

    Article  MathSciNet  Google Scholar 

  6. B. Leimkuhler, S. Reich, Simulating Hamiltonian Dynamics (Cambridge Monographs on Applied and Computational Mathematics, Cambridge, 2004)

    MATH  Google Scholar 

  7. S. Ober-Blöbaum, Galerkin variational integrators and modified symplectic Runge–Kutta methods. IMA J. Numer. Anal. 37, 375–406 (2017)

    Article  MathSciNet  Google Scholar 

  8. O.T. Kosmas, D.S. Vlachos, Phase-fitted discrete Lagrangian integrators. Comput. Phys. Commun. 181, 562–568 (2010)

    Article  MathSciNet  Google Scholar 

  9. O.T. Kosmas, D.S. Leyendecker, Analysis of higher order phase fitted variational integrators. Adv. Comput. Math. 42, 605–619 (2016)

    Article  MathSciNet  Google Scholar 

  10. O.T. Kosmas, S. Leyendecker, Variational integrators for orbital problems using frequency estimation. Adv. Comput. Math. 45, 1–21 (2019). https://doi.org/10.1007/s10444-018-9603-y

    Article  MathSciNet  Google Scholar 

  11. J. Hersch, Contribution a la methode des equations aux differences. Z. Angew. Math. Phys. 9, 129–180 (1958)

    Article  Google Scholar 

  12. J. Certaine, The Solution of Ordinary Differential Equations with Large Time Constants. Mathematical Methods for Digital Computers (Wiley, New York, 1960), pp. 128–132

    Google Scholar 

  13. D.A. Pope, An exponential method of numerical integration of ordinary differential equations. Commun. ACM 6, 491–493 (1963)

    Article  MathSciNet  Google Scholar 

  14. P. Deuflhard, A study of extrapolation methods based on multistep schemes without parasitic solutions. Z. Angew. Math. Phys. 30, 177–189 (1979)

    Article  MathSciNet  Google Scholar 

  15. M. Hochbruck, C. Lubich, H. Selfhofer, Exponential integrators for large systems of differential equations. SIAM J. Sci. Comput. 19, 1552–1574 (1998)

    Article  MathSciNet  Google Scholar 

  16. B. García-Archilla, M.J. Sanz-Serna, R.D. Skeel, Long-time-step methods for oscillatory differential equations. SIAM J. Sci. Comput. 20, 930–963 (1999)

    Article  MathSciNet  Google Scholar 

  17. A. Nealen, M. Mueller, R. Keiser, E. Boxerman, M. Carlson, Physically based deformable models in computer graphics. Comput. Graph. Forum 25, 809–836 (2006)

    Article  Google Scholar 

  18. O.T. Kosmas, S. Leyendecker, Phase lag analysis of variational integrators using interpolation techniques. PAMM Proc. Appl. Math. Mech. 12, 677–678 (2012)

    Article  Google Scholar 

  19. O.T. Kosmas, D. Papadopoulos, Multisymplectic structure of numerical methods derived using nonstandard finite difference schemes. J. Phys. Conf. Ser. 490, 012205 (2014)

    Article  Google Scholar 

  20. O.T. Kosmas, D. Papadopoulos, D. Vlachos, Geometric derivation and analysis of multi-symplectic numerical schemes for differential equations, in Computational Mathematics and Variational Analysis. Springer Optimization and Its Applications, vol. 159, ed. by N. Daras, T. Rassias (2020), pp. 207–226

    Google Scholar 

  21. O.T. Kosmas, Exponential variational integrators for the dynamics of multibody systems with holonomic constraints. J. Phys. Conf. Ser. 1391, 012170 (2019)

    Article  Google Scholar 

  22. O.T. Kosmas, S. Leyendecker, Stability analysis of high order phase fitted variational integrators, in Proceedings of WCCM XI: ECCM V—ECFD VI, vol. 1389 (2014), pp. 865–866

    Google Scholar 

  23. A. Stern, E. Grinspun, Implicit-explicit integration of highly oscillatory problems. SIAM Multiscale Model. Simul. 7, 1779–1794 (2009)

    Article  MathSciNet  Google Scholar 

  24. S. Reich, Backward error analysis for numerical integrators. SIAM J. Numer. Anal. 36, 1549–1570 (1999)

    Article  MathSciNet  Google Scholar 

  25. M. Leok, J. Zhang, Discrete Hamiltonian variational integrators. IMA J. Numer. Anal. 31, 1497–1532 (2011)

    Article  MathSciNet  Google Scholar 

  26. O.T. Kosmas, D.S. Vlachos, A space-time geodesic approach for phase fitted variational integrators. J. Phys. Conf. Ser. 738, 012133 (2016)

    Article  Google Scholar 

  27. O.T. Kosmas, Charged particle in an electromagnetic field using variational integrators. ICNAAM Numer. Anal. Appl. Math. 1389, 1927 (2011)

    Google Scholar 

  28. O.T. Kosmas, D.S. Vlachos, Local path fitting: a new approach to variational integrators. J. Comput. Appl. Math. 236, 2632–2642 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

Dr. Odysseas Kosmas wishes to acknowledge the support of EPSRC via grand EP/N026136/1 “Geometric Mechanics of Solids.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios Vlachos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kosmas, O., Vlachos, D. (2021). Error Analysis Through Energy Minimization and Stability Properties of Exponential Integrators. In: Rassias, T.M., Pardalos, P.M. (eds) Nonlinear Analysis and Global Optimization. Springer Optimization and Its Applications, vol 167. Springer, Cham. https://doi.org/10.1007/978-3-030-61732-5_13

Download citation

Publish with us

Policies and ethics