Skip to main content
Log in

Analysis of a class of nonlinear subdivision schemes and associated multiresolution transforms

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

This paper is devoted to the convergence and stability analysis of a class of nonlinear subdivision schemes and associated multiresolution transforms. As soon as a nonlinear scheme can be written as a specific perturbation of a linear and convergent subdivision scheme, we show that if some contractivity properties are satisfied, then stability and convergence can be achieved. This approach is applied to various schemes, which give different new results. More precisely, we study uncentered Lagrange interpolatory linear schemes, WENO scheme (Liu et al., J Comput Phys 115:200–212, 1994), PPH and Power-P schemes (Amat and Liandrat, Appl Comput Harmon Anal 18(2):198–206, 2005; Serna and Marquina, J Comput Phys 194:632–658, 2004) and a nonlinear scheme using local spherical coordinates (Aspert et al., Comput Aided Geom Des 20:165–187, 2003). Finally, a stability proof is given for the multiresolution transform associated to a nonlinear scheme of Marinov et al. (2005).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amat, S., Donat, R., Liandrat, J., Trillo, J.C.: Analysis of a new nonlinear subdivision scheme. Applications in image processing. Found. Comput. Math 6(2), 193–225 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Amat, S., Liandrat, J.: On the stability of PPH nonlinear multiresolution. Appl. Comput. Harmon. Anal. 18(2), 198–206 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arandiga, F., Donat, R.: Nonlinear multi-scale decompositions: the approach of A. Harten. Numer. Algorithms 23, 175–216 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Aspert, N., Ebrahimi, T., Vandergheynst, P.: Non-linear subdivision using local coordinates. Comput. Aided Geom. Des. 20, 165–187 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Beylkin, G.: Wavelets, Multiresolution Analysis and Fast Numerical Algorithms. INRIA Lectures, Manuscript (1991)

  6. Belda, A.M.: Weighted ENO y Aplicaciones. Technical report, Universitat de Valencia (2004)

  7. Cavaretta, A.S., Dahmen, W., Micchelli, C.A.: Stationary subdivision. Mem. Am. Math. Soc. 93(453) (1991)

  8. Cohen, A., Dyn, N., Matei, B.: Quasi linear subdivision schemes with applications to ENO interpolation. Appl. Comput. Harmon. Anal. 15, 89–116 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dadourian, K.: Schémas de subdivision et analyse multirésolution non-linéaire. Applications. Ph.D. thesis, Univ. de Provence. http://www.latp.univ-mrs.fr/~dadouria/these.html (2008)

  10. Dadourian, K., Liandrat, J.: Analysis of some bivariate non-linear interpolatory subdivision schemes. Numer. Algorithms 48, 261–278 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Daubechies, I., Runborg, O., Sweldens, W.: Normal multiresolution approximation of curves. Constr. Approx. 20, 399–463 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Deslauriers, G., Dubuc, S.: Symmetric iterative interpolation processes. Constr. Approx. 5, 49–68 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  13. Donoho, D., Yu, T.P.: Nonlinear pyramid transforms based on median interpolation. SIAM J. Math Anal. 31(5), 1030–1061 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dyn, N.: Subdivision Schemes in Computer Aided Geometric Design, vol. 20, no. 4, pp. 36–104. Oxford University Press, London (1992)

  15. Floater, M.S., Michelli, C.A.: Nonlinear stationary subdivision. In: Govil, N.K, Mohapatra, N., Nashed, Z., Sharma, A., Szabados, J. (eds.) Approximation Theory: in Memory of A.K. Varna, pp. 209–224 (1998)

  16. Grohs, P.: Stability of manifold-valued subdivision schemes and multi- scale transformations. Constr. Approx. doi: 10.1007/s00365-010-9085-8

  17. Harizanov, S., Oswald, P.: Stability of nonlinear subdivision and multiscale transforms. Constr. Approx. 31(3), 359–393 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Harten, A.: Discrete Multiresolution analysis and generalized wavelets. Appl. J. Numer. Math. 12, 153–192 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  19. Harten, A.: Multiresolution representation of data II: general framework. SIAM J. Numer. Anal. 33(3), 1205–1256 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jiang, G.S., Shu, C.W.: Efficient Implementation of Weighted ENO Schemes. J. Comput. Phys. 126, 202–228 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kuijt, F., van Damme, R.: Convexity preserving interpolatory subdivision schemes. Constr. Approx. 14, 609–630 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kuijt, F.: Convexity preserving interpolation. Stationary nonlinear subdivision and splines. Ph.D. thesis, University of Twente, The Netherlands (1998)

  23. Levin, D.: Using Laurent polynomial representation for the analysis of non-uniform binary subdivision scheme. Adv. Comput. Math. 11, 41–54 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  24. Liu, X.D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115, 200–212 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  25. Marinov, M., Dyn, N., Levin, D.: Geometrically controlled 4-point interpolatory schemes. In: Le, A., Mehaute, Laurent, P.J., Schumaker, L.L. (eds.) Advances in Multiresolution for Geometric Modeling, pp. 301–315 (2005)

  26. Matei, B.: Méthodes multirésolutions non-linéaires. Applications au traitement d’images. Ph.D. thesis, Université Paris VI (2002)

  27. Oswald, P.: Smoothness of nonlinear median-interpolation subdivision. Adv. Comput. Math. 20(4), 401–423 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Serna, S., Marquina, A.: Power ENO methods: a fifth order accurate weighted power ENO method. J. Comput. Phys. 194, 632–658 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Liandrat.

Additional information

Communicated by Tomas Sauer.

S. Amat research supported in part by 08662/PI/08 and MTM2007-62945.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amat, S., Dadourian, K. & Liandrat, J. Analysis of a class of nonlinear subdivision schemes and associated multiresolution transforms. Adv Comput Math 34, 253–277 (2011). https://doi.org/10.1007/s10444-010-9151-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-010-9151-6

Keywords

Mathematics Subject Classifications (2010)

Navigation