Skip to main content
Log in

Quasi-interpolatory refinable functions and construction of biorthogonal wavelet systems

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

We present a new family of compactly supported and symmetric biorthogonal wavelet systems. Each refinement mask in this family has tension parameter ω. When ω = 0, it becomes the minimal length biorthogonal Coifman wavelet system (Wei et al., IEEE Trans Image Proc 7:1000–1013, 1998). Choosing ω away from zero, we can get better smoothness of the refinable functions at the expense of slightly larger support. Though the construction of the new biorthogonal wavelet systems, in fact, starts from a new class of quasi-interpolatory subdivision schemes, we find that the refinement masks accidently coincide with the ones by Cohen et al. (Comm Pure Appl Math 45:485–560, 1992, §6.C) (or Daubechies 1992, §8.3.5), which are designed for the purpose of generating biorthogonal wavelets close to orthonormal cases. However, the corresponding mathematical analysis is yet to be provided. In this study, we highlight the connection between the quasi-interpolatory subdivision schemes and the masks by Cohen, Daubechies and Feauveau, and then we study the fundamental properties of the new biorthogonal wavelet systems such as regularity, stability, linear independence and accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Choi, S., Lee, B., Lee, Y., Yoon, J.: Stationary subdivision schemes reproducing polynomials. Comput. Aided Geom. Des. 23, 351–360 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. Chui, C.K., Wang, J.Z.: A cardinal spline approach to wavelets. Proc. Am. Math. Soc. 113, 785–793 (1991)

    MATH  MathSciNet  Google Scholar 

  3. Chui, C.K., Wang, J.Z.: A general framework of compactly supported splines and wavelets. J. Approx. Theory 71, 263–304 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cohen, A., Conze, J.P.: Régularité des bases d’ondelettes et mesures ergodiques. Rev. Mat. Iberoam. 8(3), 351–365 (1992)

    MATH  MathSciNet  Google Scholar 

  5. Cohen, A., Daubechies, I., Feauveau, J.C.: Biorthogonal bases of compactly supported wavelets. Commun. Pure Appl. Math. 45, 485–560 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  6. Daubechies, I.: Orthogonal bases of compactely supported wavelets. Commun. Pure Appl. Math. 41, 909–996 (1998)

    Article  MathSciNet  Google Scholar 

  7. Daubechies, I.: Ten Lectures on Wavelets. CBMS-NSF Series in Applied Mathematics. SIAM, Philadelphia (1992)

    MATH  Google Scholar 

  8. Deslauriers, G., Dubuc, S.: Symmetric iterative interpolation processes. Constr. Approx. 5, 49–68 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  9. Daubechies, I., Han, B., Ron, A., Shen, Z.: Framelets: MRA-based constructions of wavelet frames. Appl. Comput. Harmon. Anal. 14, 1–46 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dong, B., Shen, Z.: Construction of biorthogonal wavelets from pseudo-splines. J. Approx. Theory 138, 211–231 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dong, B., Shen, Z.: Pseudo-splines, wavelets and framelets. Appl. Comput. Harmon. Anal. 22, 78–104 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Dyn, N.: Subdivision schemes in computer-aided geometric design. In: Light, W.A. (ed.) Advances in Numerical Analysis Vol. II: Wavelets, Subdivision Algorithms and Radial Basis Functions, pp. 36–104. Oxford University Press, Oxford (1992)

    Google Scholar 

  13. Han, B., Shen, Z.: Wavelets with short support. SIAM J. Math. Anal. 38, 530–556 (2006)

    Article  MathSciNet  Google Scholar 

  14. Jeong, B., Choi, M., Kim, H.: Construction of symmetric tight wavelet frames from quasi-interpolatory subdivision masks and their applications. Int. J. Wavelets Multiresolut. Inf. Process. 6, 97–120 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  15. Jia, R.Q., Micchelli, C.A.: Using the Refinement Equations for the Construction of Prewavelets II: Powers and Two, Curves and Surfaces, pp. 209–246. Academic, London (1991)

    Google Scholar 

  16. Jia, R.Q., Wang, J.Z.: Stability and linear independence associated with wavelet decompositions. Proc. Am. Math. Soc. 117(4), 1115–1124 (1993)

    MATH  MathSciNet  Google Scholar 

  17. Kim, H., Kim, R., Lee, Y., Yoon, J.: Quasi-interpolatory refinable functions and contruction of biorthogonal, wavelet systems. Research Report Series 06–13 of KAIST (2006). http://amath.kaist.ac.kr/research/paper/06–13.pdf

  18. Li, S., Liu, Z.S.: Riesz multiwavelet bases generated by vector refinement equation. Sci. China, Ser. A Math. 52, 4680–480 (2009)

    Google Scholar 

  19. Lemarié-Rieusset, P.G..: On the existence of compactly supported dual wavelets. Appl. Comput. Harmon. Anal. 4, 117–118 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  20. Mallat, S.: Multiresolution approximations and wavelet orthonormal bases of \(L^2(\mathbb R)\). Trans. Am. Math. Soc. 315, 69–88 (1989)

    MATH  MathSciNet  Google Scholar 

  21. Shensa, M.J.: The discrete wavelet transform: wedding the à trous and Mallat’s algorithms. IEEE Trans. Signal Process. 40, 2464–2482 (1992)

    Article  MATH  Google Scholar 

  22. Wei, D., Tian, J., Wells, R.O. Jr., Burrus, C.S.: A new class of biorthogonal wavelet systems for image transform coding. IEEE Trans. Image Process. 7, 1000–1013 (1998)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jungho Yoon.

Additional information

Communicated by R. Q. Jia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, H.O., Kim, R.Y., Lee, Y.J. et al. Quasi-interpolatory refinable functions and construction of biorthogonal wavelet systems. Adv Comput Math 33, 255–283 (2010). https://doi.org/10.1007/s10444-009-9129-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-009-9129-4

Keywords

Mathematics Subject Classifications (2000)

Navigation