Skip to main content
Log in

Gabor frames by sampling and periodization

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

By sampling the window of a Gabor frame for \(L^{2} {\left( \mathbb{R} \right)}\) belonging to Feichtinger’s algebra, \(S_{0} {\left( \mathbb{R} \right)}\), one obtains a Gabor frame for \(l^{2} {\left( \mathbb{Z} \right)}\). In this article we present a survey of results by R. Orr and A.J.E.M. Janssen and extend their ideas to cover interrelations among Gabor frames for the four spaces \(L^{2} {\left( \mathbb{R} \right)}\), \(l^{2} {\left( \mathbb{Z} \right)}\), \(L^{2} {\left( {{\left[ {0,L} \right]}} \right)}\) and \(\mathbb{C}^{L} \). Some new results about general dual windows with respect to sampling and periodization are presented as well. This theory is used to show a new result of the Kaiblinger type to construct an approximation to the canonical dual window of a Gabor frame for \(L^{2} {\left( \mathbb{R} \right)}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Bittner, Wilson Bases on the Interval, In Feichtinger and Strohmer [10], chapter 9, pages 197–222.

  2. O. Christensen, Finite-dimensional approximation of the inverse frame operator, J. Fourier Anal. Appl. 6(1) (2000) 79–91.

    Article  MATH  MathSciNet  Google Scholar 

  3. O. Christensen, An Introduction to Frames and Riesz Bases (Birkhäuser, 2003).

  4. O. Christensen and T. Strohmer, Methods for the approximation of the inverse (Gabor frame operator. In Feichtinger and Strohmer [10], chapter 8, pages 171–196.

  5. I. Daubechies, and H. Landau and Z. Landau, Gabor time-frequency lattices and the Wexler-Raz identity, J. Fourier Anal. Appl. 1(4) 437–498, 95.

  6. H.G. Feichtinger, On a new Segal algebra, Monatsh. Math. 92(4) (1981) 269–289.

    Article  MATH  MathSciNet  Google Scholar 

  7. H.G. Feichtinger and K. Gröchenig, Gabor frames and time-frequency analysis of distributions, J. Func. Anal. 146 (1997) 464–495.

    Article  MATH  Google Scholar 

  8. H.G. Feichtinger and W. Kozek, Operator quantization on LCA groups. In Feichtinger and Strohmer [9], chapter 7, pages 233–266.

  9. H.G. Feichtinger and T. Strohmer, eds. Gabor Analysis and Algorithms (Birkhäuser, Boston, 1998).

    MATH  Google Scholar 

  10. H.G. Feichtinger and T. Strohmer eds. Advances in Gabor Analysis (Birkhäuser, 2003).

  11. H.G. Feichtinger and G. Zimmermann, A Banach space of test functions and Gabor analysis. In Feichtinger and Strohmer [9], chapter 3, pages 123–170.

  12. K. Gröchenig, Foundations of Time-Frequency Analysis (Birkhäuser, 2001).

  13. K. Gröchenig and M. Leinert, Wiener’s lemma for twisted convolution and Gabor frames, J. Amer. Math. Soc. 17(1) (2004).

  14. A.J.E.M. Janssen, Signal analytic proofs of two basic results on lattice expansions, Appl. Comput. Harmon. Anal. 1(4) (1994) 350–354.

    Article  MATH  MathSciNet  Google Scholar 

  15. A.J.E.M. Janssen, Duality and biorthogonality for Weyl–Heisenberg frames, J. Fourier Anal. Appl. 1(4) (1995) 403–436.

    Article  MATH  MathSciNet  Google Scholar 

  16. A.J.E.M. Janssen, On rationally oversampled Weyl-Heisenberg frames, Signal Process (1995) 239–245.

  17. A.J.E.M. Janssen, From continuous to discrete Weyl–Heisenberg frames through sampling, J. Fourier Anal. Appl. 3(5) (1997).

  18. A.J.E.M. Janssen, The duality condition for Weyl-Heisenberg frames. In Feichtinger and Strohmer [9], chapter 1, pages 33–84.

  19. N. Kaiblinger, Approximation of the Fourier transform and the dual Gabor window, J. Fourier Anal. Appl. 11(1) (2005) 25–42.

    Article  MATH  MathSciNet  Google Scholar 

  20. K.A. Okoudjou, Embeddings of some classical Banach spaces into modulation spaces, Proc. Am. Math. Soc. 132(6) (2004).

  21. R.S. Orr, Derivation of the finite discrete Gabor transform by periodization and sampling, Signal Process 34(1) (1993) 85–97.

    Article  MATH  Google Scholar 

  22. T. Strohmer, Numerical algorithms for discrete Gabor expansions. In Feichtinger and Strohmer [9], chapter 8, pages 267–294.

  23. J. Wexler and S. Raz, Discrete Gabor expansions, Signal Process 21(3) (1990) 207–221.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter L. Søndergaard.

Additional information

Communicated by Charles A. Micchelli

Rights and permissions

Reprints and permissions

About this article

Cite this article

Søndergaard, P.L. Gabor frames by sampling and periodization. Adv Comput Math 27, 355–373 (2007). https://doi.org/10.1007/s10444-005-9003-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-005-9003-y

Keywords

Mathematics subject classification (2000)

Navigation