Skip to main content
Log in

Finite-dimensional approximation of the inverse frame operator

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

A frame in a Hilbert space\(\mathcal{H}\) allows every element in\(\mathcal{H}\) to be written as a linear combination of the frame elements, with coefficients called frame coefficients. Calculations of those coefficients and many other situations where frames occur, requires knowledge of the inverse frame operator. But usually it is hard to invert the frame operator if the underlying Hilbert space is infinite dimensional. In the present paper we introduce a method for approximation of the inverse frame operator using finite subsets of the frame. In particular this allows to approximate the frame coefficients (even inl 2) using finite-dimensional linear algebra. We show that the general method simplifies in the important cases of Weil-Heisenberg frames and wavelet frames.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benedetto, J. and Li, S. (1998). The theory of multiresolution analysis frames and applications to filter banks,Appl. Comp. Harm. Anal.,5, 389–427.

    Article  MATH  MathSciNet  Google Scholar 

  2. Benedetto, J. and Frazier, M., Eds. (1994).Wavelets: Mathematics and Applications. CRC Press, Boca Raton, FL.

    Google Scholar 

  3. Casazza, P.G. and Christensen, O. (1999). Approximation of the inverse frame operator and applications to Weil-Heisenberg frames.J. Appr. Theory.,99.

  4. Casazza, P.G. and Christensen, O. (1998). Riesz frames and approximation of the frame coefficients,Appr. Theory Appl.,14(2), 1–11.

    MATH  MathSciNet  Google Scholar 

  5. Christensen, O. (1993). Frames and the projection method,Appl. Comp. Harm. Anal.,1, 50–53.

    Article  MATH  MathSciNet  Google Scholar 

  6. Christensen, O. (1995). Frames and pseudo-inverse operators,J. Math. Anal. Appl.,195, 401–414.

    Article  MATH  MathSciNet  Google Scholar 

  7. Christensen, O. and Lindner, A. (1999). Frames of exponentials: lower frame bounds for finite subfamilies, and approximation of the inverse frame operator, preprint.

  8. Chui, C., Ed. (1992).Wavelets: A Tutorial in theory and Applications. Academic Press, New York.

    Google Scholar 

  9. Chui, C. (1992).An Introduction to Wavelets. Academic Press, New York.

    MATH  Google Scholar 

  10. Daubechies, I. (1992). Ten lectures on wavelets,SIAM Conf. Series, inApplied Math., Boston, MA.

  11. Daubechies, I. (1990). The wavelet transformation, time-frequency localization and signal analysis,IEEE Trans. Inform. Theory,36, 961–1005.

    Article  MATH  MathSciNet  Google Scholar 

  12. Feichtinger, H.G. and Strohmer, T., Eds. (1997).Gabor Analysis and Algorithms: Theory and Applications. Birkhäuser, Boston, MA.

    Google Scholar 

  13. Heil, C. and Walnut, D. (1989). Continuous and discrete wavelet transforms,SIAM Review,31, 628–666.

    Article  MATH  MathSciNet  Google Scholar 

  14. Heil, C., Ramanathan, J., and Topiwala, P. (1996). Linear independence of time-frequency translates,Proc. Am. Math. Soc.,124, 2787–2795.

    Article  MATH  MathSciNet  Google Scholar 

  15. Linnell, P. (1999). Von Neumann algebras and linear independence of translates,Proc. Am. Math. Soc.,127, no. 11, 3269–3277.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Hans Feichtinger

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christensen, O. Finite-dimensional approximation of the inverse frame operator. The Journal of Fourier Analysis and Applications 6, 79–91 (2000). https://doi.org/10.1007/BF02510119

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02510119

Math Subject Classifications

Keywords and Phrases

Navigation