Skip to main content
Log in

Best time localized trigonometric polynomials and wavelets

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In spaces of trigonometric polynomials, the minimum of the angular variance is determined, which is a time localization measure forL 22∏ . Wavelets and wavelet packets are constructed with the resulting polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Breitenberger, Uncertainty measures and uncertainty relations for angle observables, Found. Phys. 15 (1983) 353–364.

    Article  MathSciNet  Google Scholar 

  2. P.L. Butzer and R. Nessel,Fourier Analysis and Approximation, Vol. I (Academic Press, New York, 1971).

    Book  Google Scholar 

  3. I. Daubechies,Ten Lecture on Wavelets (SIAM, Philadelphia, PA, 1992).

    Book  Google Scholar 

  4. R. Girgensohn and J. Prestin, Lebesgue constants for an orthogonal polynomial Schauder basis, Comput. Anal. Appl. 2 (2000) 159–175.

    MathSciNet  MATH  Google Scholar 

  5. S.S. Goh and C.A. Micchelli, Uncertainty principles in Hilbert spaces, J. Fourier Anal. Appl. 8 (2002) 335–373.

    Article  MathSciNet  Google Scholar 

  6. S.S. Goh and C.H. Yeo, Uncertainty products of local periodic wavelets, Adv. Comput. Math. 13 (2000) 319–333.

    Article  MathSciNet  Google Scholar 

  7. Y.W. Koh, S.L. Lee and H.H. Tan, Periodic orthogonal splines and wavelets, Appl. Comput. Harmon. Anal. 2 (1995) 201–218.

    Article  MathSciNet  Google Scholar 

  8. G. Meinardus,Approximation of Functions: Theory and Numerical Methods (Springer, Berlin, 1967).

    Book  Google Scholar 

  9. G. Plonka and M. Tasche, A unified approach to periodic wavelets, in:Wavelets: Theory, Algorithms and Applications, eds. C.K. Chui, L. Montefusco and L. Puccio (Academic Press, San Diego, 1994) pp. 137–151.

    MATH  Google Scholar 

  10. J. Prestin and E. Quak, Optimal functions for a periodic uncertainty principle and multiresolution analysis, Proc. Edinburgh Math. Soc. 42 (1999) 225–242.

    Article  MathSciNet  Google Scholar 

  11. J. Prestin, E. Quak, H. Rauhut and K. Selig, On the connection of uncertainty principles on the circle and on the real line, Preprint, Medizinische Universität Lübeck (2001).

  12. H. Rauhut, An uncertainty principle for periodic functions, Thesis, TU München (2001).

  13. K. Selig, Trigonometric wavelets and the uncertainty principle, in:Approximation Theory, Mathematical Research, Vol. 86, eds. M.W. Müller, M. Felten and D.H. Mache (Akademie Verlag, Berlin, 1995) pp. 293–304.

    Google Scholar 

  14. K. Selig, Periodische Wavelet-Packets und eine gradoptimale Schauderbasis, Dissertation, Shaker, (1997).

  15. K. Selig, Uncertainty principle revisited, Electron. Trans. Numer. Anal. 14 (2002) 165–177.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by C.A. Micchelli

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rauhut, H. Best time localized trigonometric polynomials and wavelets. Adv Comput Math 22, 1–20 (2005). https://doi.org/10.1007/s10444-005-7411-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-005-7411-7

Keywords

AMS subject classification

Navigation